Nitrosarchaeum koreense gen. nov., sp. nov., an aerobic and mesophilic, ammonia-oxidizing archaeon member of the phylum Thaumarchaeota isolated from agricultural soil Free

Abstract

A mesophilic, chemolithoautotrophic, neutrophilic and aerobic ammonia-oxidizing archaeon, designated strain MY1, was isolated from agricultural soil. Microscopic observation revealed short, rod-shaped cells with a diameter of 0.3–0.5 µm and length of 0.6–1.0 µm. The isolate had no flagella and pili, and possessed no genes associated with archaeal flagella synthesis. The major membrane lipids consisted mainly of the glycerol dibiphytanyl glycerol tetraether (GDGT) lipids GDGT-0 to GDGT-4 and crenarchaeol. The major intact polar lipids (IPLs) were determined as hexose plus phosphohexose IPL and dihexose IPL. Strain MY1 obtains energy by aerobically oxidizing ammonia and carbon by fixing CO2. An optimal growth was observed at 25 °C, at pH 7 and with 0.2–0.4 % (w/v) salinity that corresponds with its terrestrial habitat. The addition of α-keto acids was necessary to stimulate growth. The strain tolerated ammonium and nitrite concentrations up to 10 and 5 mM, respectively. The MY1 genome has a DNA G+C content of 32.7 mol%. Phylogenetic analysis based on the 16S rRNA gene showed that strain MY1 belongs to the family Nitrosopumilaceae of the phylum Thaumarchaeota , sharing the highest 16S rRNA gene sequence similarity (96.6–97.1 %) with marine isolates of the genus Nitrosopumilus . The average nucleotide identity was 78 % between strain MY1 and Nitrosopumilus maritimus SCM1, indicating distant relatedness. Based on the phenotypic, phylogenetic and genomic analyses, it was concluded that strain MY1 belongs to the novel genus Nitrosarchaeum, under which the name Nitrosarchaeum koreense sp. nov. is proposed as the type species. The type strain is MY1 (=JCM 31640=KCTC 4249).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002926
2018-08-20
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/10/3084.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002926&mimeType=html&fmt=ahah

References

  1. Woese CR, Fox GE. Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Natl Acad Sci USA 1977; 74:5088–5090 [View Article][PubMed]
    [Google Scholar]
  2. Woese CR, Kandler O, Wheelis ML. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci USA 1990; 87:4576–4579 [View Article][PubMed]
    [Google Scholar]
  3. Spang A, Saw JH, Jørgensen SL, Zaremba-Niedzwiedzka K, Martijn J et al. Complex archaea that bridge the gap between prokaryotes and eukaryotes. Nature 2015; 521:173–179 [View Article][PubMed]
    [Google Scholar]
  4. Petitjean C, Deschamps P, López-García P, Moreira D. Rooting the domain archaea by phylogenomic analysis supports the foundation of the new kingdom Proteoarchaeota. Genome Biol Evol 2014; 7:191–204 [View Article][PubMed]
    [Google Scholar]
  5. Castelle CJ, Wrighton KC, Thomas BC, Hug LA, Brown CT et al. Genomic expansion of domain archaea highlights roles for organisms from new phyla in anaerobic carbon cycling. Curr Biol 2015; 25:690–701 [View Article][PubMed]
    [Google Scholar]
  6. Guy L, Ettema TJ. The archaeal 'TACK' superphylum and the origin of eukaryotes. Trends Microbiol 2011; 19:580–587 [View Article][PubMed]
    [Google Scholar]
  7. Brochier-Armanet C, Boussau B, Gribaldo S, Forterre P. Mesophilic crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota. Nat Rev Microbiol 2008; 6:245–252 [View Article][PubMed]
    [Google Scholar]
  8. Spang A, Hatzenpichler R, Brochier-Armanet C, Rattei T, Tischler P et al. Distinct gene set in two different lineages of ammonia-oxidizing archaea supports the phylum Thaumarchaeota. Trends Microbiol 2010; 18:331–340 [View Article]
    [Google Scholar]
  9. Delong E. Archael means and extremes. Science 1998; 280:542–543
    [Google Scholar]
  10. Hallam SJ, Konstantinidis KT, Putnam N, Schleper C, Watanabe Y et al. Genomic analysis of the uncultivated marine crenarchaeote Cenarchaeum symbiosum. Proc Natl Acad Sci USA 2006; 103:18296–18301 [View Article][PubMed]
    [Google Scholar]
  11. Könneke M, Bernhard AE, de La Torre JR, Walker CB, Waterbury JB et al. Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 2005; 437:543–546 [View Article]
    [Google Scholar]
  12. Qin W, Heal KR, Ramdasi R, Kobelt JN, Martens-Habbena W et al. Nitrosopumilus maritimus gen. nov., sp. nov., Nitrosopumilus cobalaminigenes sp. nov., Nitrosopumilus oxyclinae sp. nov., and Nitrosopumilus ureiphilus sp. nov., four marine ammonia-oxidizing archaea of the phylum Thaumarchaeota. Int J Syst Evol Microbiol 2017
    [Google Scholar]
  13. Kim JG, Park SJ, Sinninghe Damsté JS, Schouten S, Rijpstra WI et al. Hydrogen peroxide detoxification is a key mechanism for growth of ammonia-oxidizing archaea. Proc Natl Acad Sci USA 2016; 113:7888–7893 [View Article][PubMed]
    [Google Scholar]
  14. Santoro AE, Casciotti KL. Enrichment and characterization of ammonia-oxidizing archaea from the open ocean: phylogeny, physiology and stable isotope fractionation. ISME J 2011; 5:1796–1808 [View Article][PubMed]
    [Google Scholar]
  15. Bayer B, Vojvoda J, Offre P, Alves RJ, Elisabeth NH et al. Physiological and genomic characterization of two novel marine thaumarchaeal strains indicates niche differentiation. ISME J 2016; 10:1051–1063 [View Article][PubMed]
    [Google Scholar]
  16. Jung MY, Kim JG, Sinninghe Damsté JS, Rijpstra WI, Madsen EL et al. A hydrophobic ammonia-oxidizing archaeon of the Nitrosocosmicus clade isolated from coal tar-contaminated sediment. Environ Microbiol Rep 2016; 8:983–992 [View Article][PubMed]
    [Google Scholar]
  17. Jung MY, Well R, Min D, Giesemann A, Park SJ et al. Isotopic signatures of N2O produced by ammonia-oxidizing archaea from soils. ISME J 2014; 8:1115–1125 [View Article][PubMed]
    [Google Scholar]
  18. Kim JG, Jung MY, Park SJ, Rijpstra WI, Sinninghe Damsté JS et al. Cultivation of a highly enriched ammonia-oxidizing archaeon of thaumarchaeotal group I.1b from an agricultural soil. Environ Microbiol 2012; 14:1528–1543 [View Article][PubMed]
    [Google Scholar]
  19. Lehtovirta-Morley LE, Ross J, Hink L, Weber EB, Gubry-Rangin C et al. Isolation of 'Candidatus Nitrosocosmicus franklandus', a novel ureolytic soil archaeal ammonia oxidiser with tolerance to high ammonia concentration. FEMS Microbiol Ecol 2016; 92:fiw057 [View Article][PubMed]
    [Google Scholar]
  20. Stieglmeier M, Klingl A, Alves RJ, Rittmann SK, Melcher M et al. Nitrososphaera viennensis gen. nov., sp. nov., an aerobic and mesophilic, ammonia-oxidizing archaeon from soil and a member of the archaeal phylum Thaumarchaeota. Int J Syst Evol Microbiol 2014; 64:2738–2752 [View Article][PubMed]
    [Google Scholar]
  21. Lebedeva EV, Hatzenpichler R, Pelletier E, Schuster N, Hauzmayer S et al. Enrichment and genome sequence of the group I.1a ammonia-oxidizing Archaeon "Ca. Nitrosotenuis uzonensis" representing a clade globally distributed in thermal habitats. PLoS One 2013; 8:e80835 [View Article][PubMed]
    [Google Scholar]
  22. Hatzenpichler R, Lebedeva EV, Spieck E, Stoecker K, Richter A et al. A moderately thermophilic ammonia-oxidizing crenarchaeote from a hot spring. Proc Natl Acad Sci USA 2008; 105:2134–2139 [View Article][PubMed]
    [Google Scholar]
  23. de La Torre JR, Walker CB, Ingalls AE, Könneke M, Stahl DA. Cultivation of a thermophilic ammonia oxidizing archaeon synthesizing crenarchaeol. Environ Microbiol 2008; 10:810–818 [View Article][PubMed]
    [Google Scholar]
  24. Lehtovirta-Morley LE, Stoecker K, Vilcinskas A, Prosser JI, Nicol GW. Cultivation of an obligate acidophilic ammonia oxidizer from a nitrifying acid soil. Proc Natl Acad Sci USA 2011; 108:15892–15897 [View Article][PubMed]
    [Google Scholar]
  25. Sauder LA, Albertsen M, Engel K, Schwarz J, Nielsen PH et al. Cultivation and characterization of Candidatus Nitrosocosmicus exaquare, an ammonia-oxidizing archaeon from a municipal wastewater treatment system. ISME J 2017; 11:1142–1157 [View Article][PubMed]
    [Google Scholar]
  26. Li Y, Ding K, Wen X, Zhang B, Shen B et al. A novel ammonia-oxidizing archaeon from wastewater treatment plant: Its enrichment, physiological and genomic characteristics. Sci Rep 2016; 6:23747 [View Article]
    [Google Scholar]
  27. Stein LY. Surveying N2O-producing pathways in bacteria. Methods Enzymol 2011; 486:131–152 [View Article][PubMed]
    [Google Scholar]
  28. Teske A, Alm E, Regan JM, Toze S, Rittmann BE et al. Evolutionary relationships among ammonia- and nitrite-oxidizing bacteria. J Bacteriol 1994; 176:6623–6630 [View Article]
    [Google Scholar]
  29. Purkhold U, Pommerening-Röser A, Juretschko S, Schmid MC, Koops HP et al. Phylogeny of all recognized species of ammonia oxidizers based on comparative 16S rRNA and amoA sequence analysis: implications for molecular diversity surveys. Appl Environ Microbiol 2000; 66:5368–5382 [View Article][PubMed]
    [Google Scholar]
  30. Prosser JI. Autotrophic nitrification in bacteria. Adv Microb Physiol 1989; 30:125–181
    [Google Scholar]
  31. Ward BB, O'Mullan GD. Community level analysis: genetic and biogeochemical approaches to investigate community composition and function in aerobic ammonia oxidation. Methods Enzymol 2005; 397:395–413
    [Google Scholar]
  32. Prosser JI, Nicol GW. Archaeal and bacterial ammonia-oxidisers in soil: the quest for niche specialisation and differentiation. Trends Microbiol 2012; 20:523–531 [View Article]
    [Google Scholar]
  33. Venter JC, Remington K, Heidelberg JF, Halpern AL, Rusch D et al. Environmental genome shotgun sequencing of the Sargasso Sea. Science 2004; 304:66–74 [View Article][PubMed]
    [Google Scholar]
  34. Jung MY, Park SJ, Min D, Kim JS, Rijpstra WI et al. Enrichment and characterization of an autotrophic ammonia-oxidizing archaeon of mesophilic crenarchaeal group I.1a from an agricultural soil. Appl Environ Microbiol 2011; 77:8635–8647 [View Article][PubMed]
    [Google Scholar]
  35. Jung MY, Park SJ, Kim SJ, Kim JG, Sinninghe Damsté JS et al. A mesophilic, autotrophic, ammonia-oxidizing archaeon of thaumarchaeal group I.1a cultivated from a deep oligotrophic soil horizon. Appl Environ Microbiol 2014; 80:3645–3655 [View Article][PubMed]
    [Google Scholar]
  36. Tourna M, Stieglmeier M, Spang A, Könneke M, Schintlmeister A et al. Nitrososphaera viennensis, an ammonia oxidizing archaeon from soil. Proc Natl Acad Sci USA 2011; 108:8420–8425 [View Article][PubMed]
    [Google Scholar]
  37. Lehtovirta-Morley LE, Ge C, Ross J, Yao H, Nicol GW et al. Characterisation of terrestrial acidophilic archaeal ammonia oxidisers and their inhibition and stimulation by organic compounds. FEMS Microbiol Ecol 2014; 89:542–552 [View Article]
    [Google Scholar]
  38. Könneke M, Schubert DM, Brown PC, Hügler M, Standfest S et al. Ammonia-oxidizing archaea use the most energy-efficient aerobic pathway for CO2 fixation. Proc Natl Acad Sci USA 2014; 111:8239–8244 [View Article][PubMed]
    [Google Scholar]
  39. Stahl DA, de La Torre JR. Physiology and diversity of ammonia-oxidizing archaea. Annu Rev Microbiol 2012; 66:83–101 [View Article][PubMed]
    [Google Scholar]
  40. Hatzenpichler R. Diversity, physiology, and niche differentiation of ammonia-oxidizing archaea. Appl Environ Microbiol 2012; 78:7501–7510 [View Article][PubMed]
    [Google Scholar]
  41. Stieglmeier M, Alves RJE, Schleper C. The phylum Thaumarchaeota. In Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F et al. (editors) The Prokaryotes: Other Major Lineages of Bacteria and The Archaea Berlin, Heidelberg: Springer Berlin Heidelberg; 2014 pp. 347–362
    [Google Scholar]
  42. Martens-Habbena W, Stahl DA. Nitrogen metabolism and kinetics of ammonia-oxidizing archaea. Methods Enzymol 2011; 496:465–487
    [Google Scholar]
  43. Kits KD, Sedlacek CJ, Lebedeva EV, Han P, Bulaev A et al. Kinetic analysis of a complete nitrifier reveals an oligotrophic lifestyle. Nature 2017; 549:269–272 [View Article]
    [Google Scholar]
  44. Qin W, Amin SA, Martens-Habbena W, Walker CB, Urakawa H et al. Marine ammonia-oxidizing archaeal isolates display obligate mixotrophy and wide ecotypic variation. Proc Natl Acad Sci USA 2014; 111:12504–12509 [View Article][PubMed]
    [Google Scholar]
  45. Schreiber F, Wunderlin P, Udert KM, Wells GF. Nitric oxide and nitrous oxide turnover in natural and engineered microbial communities: biological pathways, chemical reactions, and novel technologies. Front Microbiol 2012; 3:372 [View Article][PubMed]
    [Google Scholar]
  46. Löscher CR, Kock A, Könneke M, Laroche J, Bange HW et al. Production of oceanic nitrous oxide by ammonia-oxidizing archaea. Biogeosciences 2012; 9:2419–2429 [View Article]
    [Google Scholar]
  47. Stieglmeier M, Mooshammer M, Kitzler B, Wanek W, Zechmeister-Boltenstern S et al. Aerobic nitrous oxide production through N-nitrosating hybrid formation in ammonia-oxidizing archaea. ISME J 2014; 8:1135–1146 [View Article][PubMed]
    [Google Scholar]
  48. Santoro AE, Buchwald C, McIlvin MR, Casciotti KL. Isotopic signature of N(2)O produced by marine ammonia-oxidizing archaea. Science 2011; 333:1282–1285 [View Article][PubMed]
    [Google Scholar]
  49. Kozlowski JA, Stieglmeier M, Schleper C, Klotz MG, Stein LY. Pathways and key intermediates required for obligate aerobic ammonia-dependent chemolithotrophy in bacteria and Thaumarchaeota. ISME J 2016; 10:1836–1845 [View Article][PubMed]
    [Google Scholar]
  50. Damsté JS, Rijpstra WI, Hopmans EC, Jung MY, Kim JG et al. Intact polar and core glycerol dibiphytanyl glycerol tetraether lipids of group I.1a and I.1b Thaumarchaeota in soil. Appl Environ Microbiol 2012; 78:6866–6874 [View Article][PubMed]
    [Google Scholar]
  51. Elling FJ, Könneke M, Lipp JS, Becker KW, Gagen EJ et al. Effects of growth phase on the membrane lipid composition of the thaumarchaeon Nitrosopumilus maritimus and their implications for archaeal lipid distributions in the marine environment. Geochim Cosmochim Acta 2014; 141:579–597 [View Article]
    [Google Scholar]
  52. Qin W, Carlson LT, Armbrust EV, Devol AH, Moffett JW et al. Confounding effects of oxygen and temperature on the TEX86 signature of marine Thaumarchaeota. Proc Natl Acad Sci U S A 2015; 112:10979–10984 [View Article]
    [Google Scholar]
  53. Pitcher A, Rychlik N, Hopmans EC, Spieck E, Rijpstra WI et al. Crenarchaeol dominates the membrane lipids of Candidatus Nitrososphaera gargensis, a thermophilic group I.1b Archaeon. Isme J 2010; 4:542–552 [View Article][PubMed]
    [Google Scholar]
  54. Pitcher A, Hopmans EC, Mosier AC, Park SJ, Rhee SK et al. Core and intact polar glycerol dibiphytanyl glycerol tetraether lipids of ammonia-oxidizing archaea enriched from marine and estuarine sediments. Appl Environ Microbiol 2011; 77:3468–3477 [View Article][PubMed]
    [Google Scholar]
  55. Mussmann M, Brito I, Pitcher A, Sinninghe Damsté JS, Hatzenpichler R et al. Thaumarchaeotes abundant in refinery nitrifying sludges express amoA but are not obligate autotrophic ammonia oxidizers. Proc Natl Acad Sci USA 2011; 108:16771–16776 [View Article][PubMed]
    [Google Scholar]
  56. Nicol GW, Leininger S, Schleper C, Prosser JI. The influence of soil pH on the diversity, abundance and transcriptional activity of ammonia oxidizing archaea and bacteria. Environ Microbiol 2008; 10:2966–2978 [View Article]
    [Google Scholar]
  57. Wang B, Zhao J, Guo Z, Ma J, Xu H et al. Differential contributions of ammonia oxidizers and nitrite oxidizers to nitrification in four paddy soils. ISME J 2015; 9:1062–1075 [View Article][PubMed]
    [Google Scholar]
  58. Zhang LM, Offre PR, He JZ, Verhamme DT, Nicol GW et al. Autotrophic ammonia oxidation by soil thaumarchaea. Proc Natl Acad Sci USA 2010; 107:17240–17245 [View Article][PubMed]
    [Google Scholar]
  59. Alm EW, Oerther DB, Larsen N, Stahl DA, Raskin L. The oligonucleotide probe database. Appl Environ Microbiol 1996; 62:3557–3559
    [Google Scholar]
  60. Amann RI, Binder BJ, Olson RJ, Chisholm SW, Devereux R et al. Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol 1990; 56:1919–1925
    [Google Scholar]
  61. Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol 1966; 16:313–340 [View Article]
    [Google Scholar]
  62. Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W et al. SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 2007; 35:7188–7196 [View Article]
    [Google Scholar]
  63. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25:4876–4882 [View Article][PubMed]
    [Google Scholar]
  64. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article][PubMed]
    [Google Scholar]
  65. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article][PubMed]
    [Google Scholar]
  66. Kim BK, Jung MY, Yu DS, Park SJ, Oh TK et al. Genome sequence of an ammonia-oxidizing soil archaeon, "Candidatus Nitrosoarchaeum koreensis" MY1. J Bacteriol 2011; 193:5539–5540 [View Article][PubMed]
    [Google Scholar]
  67. Rodriguez-R LM, Konstantinidis KT. The enveomics collection: a toolbox for specialized analyses of microbial genomes and metagenomes. PeerJ Preprints 2016; 4:e1900v1901
    [Google Scholar]
  68. Widderich N, Czech L, Elling FJ, Könneke M, Stöveken N et al. Strangers in the archaeal world: osmostress-responsive biosynthesis of ectoine and hydroxyectoine by the marine thaumarchaeon Nitrosopumilus maritimus. Environ Microbiol 2016; 18:1227–1248 [View Article]
    [Google Scholar]
  69. Blainey PC, Mosier AC, Potanina A, Francis CA, Quake SR. Genome of a low-salinity ammonia-oxidizing archaeon determined by single-cell and metagenomic analysis. PLoS One 2011; 6:e16626 [View Article][PubMed]
    [Google Scholar]
  70. Mosier AC, Allen EE, Kim M, Ferriera S, Francis CA. Genome sequence of "Candidatus Nitrosoarchaeum limnia" BG20, a low-salinity ammonia-oxidizing archaeon from the San Francisco Bay estuary. J Bacteriol 2012; 194:2119–2120 [View Article][PubMed]
    [Google Scholar]
  71. Martens-Habbena W, Berube PM, Urakawa H, de La Torre JR, Stahl DA. Ammonia oxidation kinetics determine niche separation of nitrifying Archaea and Bacteria. Nature 2009; 461:976–979 [View Article][PubMed]
    [Google Scholar]
  72. Shaw LJ, Nicol GW, Smith Z, Fear J, Prosser JI et al. Nitrosospira spp. can produce nitrous oxide via a nitrifier denitrification pathway. Environ Microbiol 2006; 8:214–222 [View Article]
    [Google Scholar]
  73. Remde A, Conrad R. Production of nitric oxide in Nitrosomonas europaea by reduction of nitrite. Arch Microbiol 1990; 154:187–191 [View Article]
    [Google Scholar]
  74. Jiang QQ, Bakken LR. Comparison of Nitrosospira strains isolated from terrestrial environments. FEMS Microbiol Ecol 1999; 30:171–186 [View Article]
    [Google Scholar]
  75. Colliver BB, Stephenson T. Production of nitrogen oxide and dinitrogen oxide by autotrophic nitrifiers. Biotechnol Adv 2000; 18:219–232 [View Article]
    [Google Scholar]
  76. Qin W, Meinhardt KA, Moffett JW, Devol AH, Virginia Armbrust E et al. Influence of oxygen availability on the activities of ammonia-oxidizing archaea. Environ Microbiol Rep 2017; 9:250–256 [View Article]
    [Google Scholar]
  77. Hink L, Lycus P, Gubry-Rangin C, Frostegård Å, Nicol GW et al. Kinetics of NH3 -oxidation, NO-turnover, N2O-production and electron flow during oxygen depletion in model bacterial and archaeal ammonia oxidisers. Environ Microbiol 2017; 19:4882–4896 [View Article][PubMed]
    [Google Scholar]
  78. Shen T, Stieglmeier M, Dai J, Urich T, Schleper C. Responses of the terrestrial ammonia-oxidizing archaeon Ca. Nitrososphaera viennensis and the ammonia-oxidizing bacterium Nitrosospira multiformis to nitrification inhibitors. FEMS Microbiol Lett 2013; 344:121–129 [View Article][PubMed]
    [Google Scholar]
  79. Martens-Habbena W, Qin W, Horak RE, Urakawa H, Schauer AJ et al. The production of nitric oxide by marine ammonia-oxidizing archaea and inhibition of archaeal ammonia oxidation by a nitric oxide scavenger. Environ Microbiol 2015; 17:2261–2274 [View Article][PubMed]
    [Google Scholar]
  80. Lehtovirta-Morley LE, Verhamme DT, Nicol GW, Prosser JI. Effect of nitrification inhibitors on the growth and activity of Nitrosotalea devanaterra in culture and soil. Soil Biol Biochem 2013; 62:129–133 [View Article]
    [Google Scholar]
  81. Yan J, Haaijer SC, Op den Camp HJ, van Niftrik L, Stahl DA et al. Mimicking the oxygen minimum zones: stimulating interaction of aerobic archaeal and anaerobic bacterial ammonia oxidizers in a laboratory-scale model system. Environ Microbiol 2012; 14:3146–3158 [View Article][PubMed]
    [Google Scholar]
  82. Mosier AC, Lund MB, Francis CA. Ecophysiology of an ammonia-oxidizing archaeon adapted to low-salinity habitats. Microb Ecol 2012; 64:955–963 [View Article][PubMed]
    [Google Scholar]
  83. Hyman MR, Kim CY, Arp DJ. Inhibition of ammonia monooxygenase in Nitrosomonas europaea by carbon disulfide. J Bacteriol 1990; 172:4775–4782 [View Article]
    [Google Scholar]
  84. McCarty GW. Modes of action of nitrification inhibitors. Biol Fertil Soils 1999; 29:1–9 [View Article]
    [Google Scholar]
  85. Amberger A. Research on dicyandiamide as a nitrification inhibitor and future outlook. Commun Soil Sci Plant Anal 1989; 20:1933–1955 [View Article]
    [Google Scholar]
  86. Zacherl B, Amberger A. Effect of the nitrification inhibitors dicyandiamide, nitrapyrin and thiourea on Nitrosomonas europaea. Fert Res 1990; 22:37–44 [View Article]
    [Google Scholar]
  87. Hooper AB, Terry KR. Specific inhibitors of ammonia oxidation in Nitrosomonas. J Bacteriol 1973; 115:480–485
    [Google Scholar]
  88. Beveridge TJ, Schultze-Lam S. The response of selected members of the archaea to the gram stain. Microbiology 1996; 142:2887–2895 [View Article][PubMed]
    [Google Scholar]
  89. Küper U, Meyer C, Müller V, Rachel R, Huber H. Energized outer membrane and spatial separation of metabolic processes in the hyperthermophilic Archaeon Ignicoccus hospitalis. Proc Natl Acad Sci USA 2010; 107:3152–3156 [View Article][PubMed]
    [Google Scholar]
  90. Rachel R, Wyschkony I, Riehl S, Huber H. The ultrastructure of Ignicoccus: evidence for a novel outer membrane and for intracellular vesicle budding in an archaeon. Archaea 2002; 1:9–18 [View Article][PubMed]
    [Google Scholar]
  91. Damste JS, Schouten S, Hopmans EC, van Duin AC, Geenevasen JA. Crenarchaeol: the characteristic core glycerol dibiphytanyl glycerol tetraether membrane lipid of cosmopolitan pelagic crenarchaeota. J Lipid Res 2002; 43:1641–1651
    [Google Scholar]
  92. Schouten S, Hopmans EC, Baas M, Boumann H, Standfest S et al. Intact membrane lipids of "Candidatus Nitrosopumilus maritimus," a cultivated representative of the cosmopolitan mesophilic group I Crenarchaeota. Appl Environ Microbiol 2008; 74:2433–2440 [View Article][PubMed]
    [Google Scholar]
  93. Hurley SJ, Elling FJ, Könneke M, Buchwald C, Wankel SD et al. Influence of ammonia oxidation rate on thaumarchaeal lipid composition and the TEX86 temperature proxy. Proc Natl Acad Sci USA 2016; 113:7762–7767 [View Article][PubMed]
    [Google Scholar]
  94. Walker CB, de La Torre JR, Klotz MG, Urakawa H, Pinel N et al. Nitrosopumilus maritimus genome reveals unique mechanisms for nitrification and autotrophy in globally distributed marine crenarchaea. Proc Natl Acad Sci USA 2010; 107:8818–8823 [View Article][PubMed]
    [Google Scholar]
  95. Santoro AE, Dupont CL, Richter RA, Craig MT, Carini P et al. Genomic and proteomic characterization of "Candidatus Nitrosopelagicus brevis": an ammonia-oxidizing archaeon from the open ocean. Proc Natl Acad Sci USA 2015; 112:1173–1178 [View Article][PubMed]
    [Google Scholar]
  96. Herbold CW, Lehtovirta-Morley LE, Jung MY, Jehmlich N, Hausmann B et al. Ammonia-oxidising archaea living at low pH: Insights from comparative genomics. Environ Microbiol 2017; 19:4939–4952 [View Article]
    [Google Scholar]
  97. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002926
Loading
/content/journal/ijsem/10.1099/ijsem.0.002926
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited Most Cited RSS feed