1887

Abstract

Two novel marine bacteria, designated strains CSC3H3 and CSC1P2, were isolated from surface seawater of the South China Sea. Both strains were Gram-negative, oxidase-positive, catalase-positive, curved rods and motile. They grew at 10–40 °C, pH 5–10 and in the presence of 0–15 % (w/v) NaCl. Their 16S rRNA gene sequences were identical to each other. Phylogenetic analysis based on 16S rRNA gene sequences indicated that they belong to the genus Thalassospira , and shared 97.5–98.3 % sequence similarity to all other validly type strains of the genus Thalassospira , and the highest similarity was to the type strain Thalassospira povalilytica Zumi 95 (98.3 %), followed by Thalassospira australica NP3b2 (98.2 %). The digital DNA–DNA hybridization value between the two strains was 80.4 %, while the values with T. povalilytica Zumi 95 and T. australica NP3b2 were only 20.5–20.7 % and 20.4–20.5 %, respectively. The two strains possess similar major cellular fatty acids including C18 : 1ω7c, C16 : 0, C19 : 0ω8c cyclo, C18 : 1 2-OH and C17 : 0 cyclo. The G+C contents of the chromosomal DNA of strains CSC3H3 and CSC1P2 were 54.6 and 54.5 mol%, respectively. The major respiratory quinone was ubiquinone 10. Phosphatidylethanolamine, phosphatidylglycerol and several unidentified phospholipids, aminolipid and lipids were present in both strains. Based on phenotypic and genotypic characteristics, the two strains represent a novel species within the genus Thalassospira, for which the name Thalassospira marina sp. nov. is proposed. The type strain is CSC3H3 (=MCCC 1A11786=KCTC 62333).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002925
2018-07-20
2019-09-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/9/2943.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002925&mimeType=html&fmt=ahah

References

  1. López-López A, Pujalte MJ, Benlloch S, Mata-Roig M, Rosselló-Mora R et al. Thalassospira lucentensis gen. nov., sp. nov., a new marine member of the alpha-Proteobacteria. Int J Syst Evol Microbiol 2002;52:1277–1283 [CrossRef][PubMed]
    [Google Scholar]
  2. Liu C, Wu Y, Li L, Ma Y, Shao Z. Thalassospira xiamenensis sp. nov. and Thalassospira profundimaris sp. nov. Int J Syst Evol Microbiol 2007;57:316–320 [CrossRef][PubMed]
    [Google Scholar]
  3. Tsubouchi T, Ohta Y, Haga T, Usui K, Shimane Y et al. Thalassospira alkalitolerans sp. nov. and Thalassospira mesophila sp. nov., isolated from a decaying bamboo sunken in the marine environment, and emended description of the genus Thalassospira. Int J Syst Evol Microbiol 2014;64:107–115 [CrossRef][PubMed]
    [Google Scholar]
  4. Kodama Y, Stiknowati LI, Ueki A, Ueki K, Watanabe K. Thalassospira tepidiphila sp. nov., a polycyclic aromatic hydrocarbon-degrading bacterium isolated from seawater. Int J Syst Evol Microbiol 2008;58:711–715 [CrossRef][PubMed]
    [Google Scholar]
  5. Zhao B, Wang H, Li R, Mao X. Thalassospira xianhensis sp. nov., a polycyclic aromatic hydrocarbon-degrading marine bacterium. Int J Syst Evol Microbiol 2010;60:1125–1129 [CrossRef][PubMed]
    [Google Scholar]
  6. Nogi Y, Yoshizumi M, Miyazaki M. Thalassospira povalilytica sp. nov., a polyvinyl-alcohol-degrading marine bacterium. Int J Syst Evol Microbiol 2014;64:1149–1153 [CrossRef][PubMed]
    [Google Scholar]
  7. Shivaji S, Sathyanarayana Reddy G, Sundareswaran VR, Thomas C. Description of Thalassospira lohafexi sp. nov., isolated from Southern Ocean, Antarctica. Arch Microbiol 2015;197:627–637 [CrossRef][PubMed]
    [Google Scholar]
  8. Ivanova EP, López-Pérez M, Webb HK, Ng HJ, Dang TH et al. Thalassospira australica sp. nov. isolated from sea water. Antonie van Leeuwenhoek 2016;109:1091–1100 [CrossRef][PubMed]
    [Google Scholar]
  9. Liu Y, Lai Q, du J, Sun F, Shao Z. Thalassospira indica sp. nov., isolated from deep seawater. Int J Syst Evol Microbiol 2016;66:4942–4946 [CrossRef][PubMed]
    [Google Scholar]
  10. Plotnikova EG, Anan'ina LN, Krausova VI, Ariskina EV, Prisyazhnaya NV et al. Thalassospira permensis sp. nov., a new terrestrial halotolerant bacterium isolated from a naphthalene-utilizing microbial consortium. Mikrobiologiia 2011;80:703–712 [CrossRef][PubMed]
    [Google Scholar]
  11. Pulicherla KK, Kumar PS, Manideep K, Rekha VP, Ghosh M et al. Statistical approach for the enhanced production of cold-active β-galactosidase from Thalassospira frigidphilosprofundus: a novel marine psychrophile from deep waters of Bay of Bengal. Prep Biochem Biotechnol 2013;43:766–780 [CrossRef][PubMed]
    [Google Scholar]
  12. Liu C, Shao Z. Isolation and characterization of oil-degrading marine micro-organisms. Acta Oceanologica Sinica 2005;27:114–420
    [Google Scholar]
  13. Wang B, Lai Q, Cui Z, Tan T, Shao Z. A pyrene-degrading consortium from deep-sea sediment of the West Pacific and its key member Cycloclasticus sp. P1. Environ Microbiol 2008;10:1948–1963 [CrossRef][PubMed]
    [Google Scholar]
  14. Cui Z, Lai Q, Dong C, Shao Z. Biodiversity of polycyclic aromatic hydrocarbon-degrading bacteria from deep sea sediments of the Middle Atlantic Ridge. Environ Microbiol 2008;10:2138–2149 [CrossRef][PubMed]
    [Google Scholar]
  15. Yuan J, Lai Q, Sun F, Zheng T, Shao Z. The diversity of PAH-degrading bacteria in a deep-sea water column above the Southwest Indian Ridge. Front Microbiol 2015;6:853 [CrossRef][PubMed]
    [Google Scholar]
  16. Dong C, Bai X, Sheng H, Jiao L, Zhou H et al. Distribution of PAHs and the PAH-degrading bacteria in the deep-sea sediments of the high-latitude Arctic Ocean. Biogeosciences 2015;12:2163–2177 [CrossRef]
    [Google Scholar]
  17. Dong X, Cai M. Determinative Manual for Routine Bacteriology Beijing: Scientific Press; 2001
    [Google Scholar]
  18. Lai Q, Liu Y, Shao Z. Bacillus xiamenensis sp. nov., isolated from intestinal tract contents of a flathead mullet (Mugil cephalus). Antonie van Leeuwenhoek 2014;105:99–107 [CrossRef][PubMed]
    [Google Scholar]
  19. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67:1613–1617 [CrossRef][PubMed]
    [Google Scholar]
  20. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425 [CrossRef][PubMed]
    [Google Scholar]
  21. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  22. Rzhetsky A, Nei M. A simple method for estimating and testing minimum-evolution trees. Mol Biol Evol 1992;9:945–967
    [Google Scholar]
  23. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980;16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  24. Tamura K, Peterson D, Peterson N, Stecher G, Nei M et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011;28:2731–2739 [CrossRef][PubMed]
    [Google Scholar]
  25. Liu Y, Lai Q, Dong C, Sun F, Wang L et al. Phylogenetic diversity of the Bacillus pumilus group and the marine ecotype revealed by multilocus sequence analysis. PLoS One 2013;8:e80097 [CrossRef][PubMed]
    [Google Scholar]
  26. Wang LT, Lee FL, Tai CJ, Kasai H. Comparison of gyrB gene sequences, 16S rRNA gene sequences and DNA–DNA hybridization in the Bacillus subtilis group. Int J Syst Evol Microbiol 2007;57:1846–1850 [CrossRef][PubMed]
    [Google Scholar]
  27. Kirby BM, Everest GJ, Meyers PR. Phylogenetic analysis of the genus Kribbella based on the gyrB gene: proposal of a gyrB-sequence threshold for species delineation in the genus Kribbella. Antonie van Leeuwenhoek 2010;97:131–142 [CrossRef][PubMed]
    [Google Scholar]
  28. Lai Q, Liu Y, Yuan J, Du J, Wang L et al. Multilocus sequence analysis for assessment of phylogenetic diversity and biogeography in Thalassospira bacteria from diverse marine environments. PLoS One 2014;9:e106353 [CrossRef][PubMed]
    [Google Scholar]
  29. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987;37:463–464 [CrossRef]
    [Google Scholar]
  30. Auch AF, von Jan M, Klenk HP, Göker M. Digital DNA–DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2010;2:117–134 [CrossRef][PubMed]
    [Google Scholar]
  31. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013;14:60 [CrossRef][PubMed]
    [Google Scholar]
  32. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. North Newark, Del, USA: MIDI Inc; 1990
    [Google Scholar]
  33. Collins MD. Isoprenoid quinone analyses in bacterial classification and identification. In Goodfellow M, Minnikin DE. (editors) Chemical Methods in Bacterial Systematics London: Academic Press; 1985; pp.267–287
    [Google Scholar]
  34. Kates M. Techniques of lipidology: Isolation, Analysis, and Identification of Lipids, 2nd rev. ed. Amsterdam: Elsevier; 1986
    [Google Scholar]
  35. Dyksterhouse SE, Gray JP, Herwig RP, Lara JC, Staley JT. Cycloclasticus pugetii gen. nov., sp. nov., an aromatic hydrocarbon-degrading bacterium from marine sediments. Int J Syst Bacteriol 1995;45:116–123 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002925
Loading
/content/journal/ijsem/10.1099/ijsem.0.002925
Loading

Data & Media loading...

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error