1887

Abstract

A novel aerobic actinomycete, designated as HA15955, was isolated from a mangrove mud sample collected in Sanya, China. Scanning electron microscopy revealed that HA15955 produced straight to spiral spore chains with smooth cylindrical spores. 16S rRNA gene sequence similarity showed that strain HA15955 belonged to the genus Streptomyces , was most closely related to Streptomyces speibonae NRRL B-24240 (98.7 % similarity) and formed a distinct subclade. The low relatedness value of DNA–DNA hybridization showed that it formed a distinct genomic species. Based on phenotypic, genotypic and phylogenetic data, strain HA15955 should be classified as a novel species of the genus Streptomyces , for which the name Streptomyces caeni sp. nov. is proposed. The type strain is HA15955 (=CGMCC 4.7426=DSM 105693).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002916
2018-08-28
2020-09-30
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/10/3080.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002916&mimeType=html&fmt=ahah

References

  1. Kämpfer P. The family Streptomycetaceae. Part I: Taxonomy. In Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E et al. (editors) The Prokaryotes: A Handbook on the Biology of Bacteria, 3rd ed.vol. 3 New York: Springer; 2006; pp.538–604
    [Google Scholar]
  2. Lechevalier MP, Lechevalier H. Chemical composition as a criterion in the classification of aerobic actinomycetes. Int J Syst Bacteriol 1970;20:435–443 [CrossRef]
    [Google Scholar]
  3. Euzéby JP. 2012; List of prokaryotic names with standing in nomenclature: the genus Streptomyces. www.bacterio.cict.fr/s/ streptomycesa.html
  4. Takeuchi M, Hatano K. Phylogenetic analysis of actinobacteria in the mangrove rhizosphere. IFO Res Commun 1999;19:47–62
    [Google Scholar]
  5. Kathiresan K, Bingham BL. Biology of mangroves and mangrove ecosystems. Adv Mar Biol 2001;40:81–251
    [Google Scholar]
  6. Gause GF, Preobrazhenskaya TP, Sveshnikova MA, Terekhova LP, Maximova TS et al. A Guide for the Determination of Actinomycetes. Genera Streptomyces, Streptoverticillium and Chaina Moscow: Nauka; 1983
    [Google Scholar]
  7. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991;173:697–703 [CrossRef][PubMed]
    [Google Scholar]
  8. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997;25:4876–4882 [CrossRef][PubMed]
    [Google Scholar]
  9. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67:1613–1617 [CrossRef][PubMed]
    [Google Scholar]
  10. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425 [CrossRef][PubMed]
    [Google Scholar]
  11. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  12. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971;20:406–416 [CrossRef]
    [Google Scholar]
  13. Tamura K, Peterson D, Peterson N, Stecher G, Nei M et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011;28:2731–2739 [CrossRef][PubMed]
    [Google Scholar]
  14. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39:783–791 [CrossRef][PubMed]
    [Google Scholar]
  15. Meyers PR, Porter DS, Omorogie C, Pule JM, Kwetane T. Streptomyces speibonae sp. nov., a novel streptomycete with blue substrate mycelium isolated from South African soil. Int J Syst Evol Microbiol 2003;53:801–805 [CrossRef][PubMed]
    [Google Scholar]
  16. Promnuan Y, Kudo T, Ohkuma M, Chantawannakul P. Streptomyces chiangmaiensis sp. nov. and Streptomyces lannensis sp. nov., isolated from the South-East Asian stingless bee (Tetragonilla collina). Int J Syst Evol Microbiol 2013;63:1896–1901 [CrossRef][PubMed]
    [Google Scholar]
  17. Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol 1966;16:313–340 [CrossRef]
    [Google Scholar]
  18. Kornerup A, Wanscher JH. Methuen Handbook of Colour, 3rd ed. London: Eyre Methuen; 1978
    [Google Scholar]
  19. Williams ST, Goodfellow M, Alderson G. Genus Streptomyces Waksman and Henrici 1943, 339AL. In Williams ST, Sharpe ME, Holt JG. (editors) Bergey’s Manual of Systematic Bacteriology Baltimore: Williams & Wilkins; 1989; pp.2452–2492
    [Google Scholar]
  20. Lh X, Wj L, Liu ZH, Jiang CL. Systematics of Actinomycetes Beijing, China: Science press; 2007
    [Google Scholar]
  21. Lechevalier MP, Lechevalier HA. The chemotaxonomy of actinomycetes. In Dietz A, Thayer DW. (editors) Actinomycete Taxonomy Arlington, VA: Society for Industrial Microbiology; 1980; pp.22–291
    [Google Scholar]
  22. Kuykendall LD, Roy MA, O'Neill JJ, Devine TE. Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. Int J Syst Bacteriol 1988;38:358–361 [CrossRef]
    [Google Scholar]
  23. Collins MD. Isoprenoid quinone analysis in classification and identification. In Goodfellow M, Minnikin DE. (editors) Chemical Methods in Bacterial Systematics London: Academic Press; 1985; pp.267–287
    [Google Scholar]
  24. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984;2:233–241 [CrossRef]
    [Google Scholar]
  25. Ruan JS. A rapid determination method for phosphate lipids. Microbiol China 2006;37:190–193
    [Google Scholar]
  26. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989;39:159–167 [CrossRef]
    [Google Scholar]
  27. Ezaki T, Hashimoto Y, Yabuuchi E. Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 1989;39:224–229 [CrossRef]
    [Google Scholar]
  28. Christensen H, Angen O, Mutters R, Olsen JE, Bisgaard M. DNA-DNA hybridization determined in micro-wells using covalent attachment of DNA. Int J Syst Evol Microbiol 2000;50:1095–1102 [CrossRef][PubMed]
    [Google Scholar]
  29. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987;37:463–464 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002916
Loading
/content/journal/ijsem/10.1099/ijsem.0.002916
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error