1887

Abstract

A Gram-negative, aerobic, non-spore-forming, non-motile, yellow-pigmented and rod-shaped bacterial strain, designated B093034, was isolated from air at the foot of Xiangshan mountain, located in Beijing, China. Cells of strain B093034 were oxidase-negative and catalase-positive. Growth was observed at 4–41 °C, at pH 4.5–10.0 and at 0–7 % (w/v) NaCl. The isolate contained Q-10 as the predominant isoprenoid quinone, summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c), C16 : 0 and C14 : 02-OH as the major fatty acids, sym-homospermidine as the major polyamine, and sphingoglycolipid, phosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, diphosphatidylglycerol, aminolipid, two unidentified phospholipids and three unidentified polar lipids as the polar lipids. The DNA G+C content was 67.1 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain B093034 grouped with members of the genus Sphingomonas and was closely related to Sphingomonas sanguinis IFO 13937 (96.49 % similarity), Sphingomonas pseudosanguinis G1-2 (96.37 %), Sphingomonas ginsenosidimutans Gsoil 1429 (95.99 %) and Sphingomonas endophytica YIM 65583 (95.78 %). On the basis of the polyphasic evidence presented here, strain B093034 represents a novel species of the genus Sphingomonas , for which the name Sphingomonas aeria sp. nov. is proposed. The type strain is B093034 (=CFCC 13949=LMG 30133).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002910
2018-07-16
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/9/2866.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002910&mimeType=html&fmt=ahah

References

  1. Yabuuchi E, Yano I, Oyaizu H, Hashimoto Y, Ezaki T et al. Proposals of Sphingomonas paucimobilis gen. nov. and comb. nov., Sphingomonas parapaucimobilis sp. nov., Sphingomonas yanoikuyae sp. nov., Sphingomonas adhaesiva sp. nov., Sphingomonas capsulata comb. nov., and two genospecies of the genus Sphingomonas. Microbiol Immunol 1990; 34:99–119 [View Article][PubMed]
    [Google Scholar]
  2. Takeuchi M, Hamana K, Hiraishi A. Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. Int J Syst Evol Microbiol 2001; 51:1405–1417 [View Article][PubMed]
    [Google Scholar]
  3. Yabuuchi E, Kosako Y, Naka T, Suzuki S, Yano I. Proposal of Sphingomonas suberifaciens (van Bruggen, Jochimsen and Brown 1990) comb. nov., Sphingomonas natatoria (Sly 1985) comb. nov., Sphingomonas ursincola (Yurkov et al. 1997) comb. nov., and emendation of the genus Sphingomonas. Microbiol Immunol 1999; 43:339–349 [View Article][PubMed]
    [Google Scholar]
  4. Yabuuchi E, Kosako Y, Fujiwara N, Naka T, Matsunaga I et al. Emendation of the genus Sphingomonas Yabuuchi et al. 1990 and junior objective synonymy of the species of three genera, Sphingobium, Novosphingobium and Sphingopyxis, in conjunction with Blastomonas ursincola. Int J Syst Evol Microbiol 2002; 52:1485–1496 [View Article][PubMed]
    [Google Scholar]
  5. Busse HJ, Denner EB, Buczolits S, Salkinoja-Salonen M, Bennasar A et al. Sphingomonas aurantiaca sp. nov., Sphingomonas aerolata sp. nov. and Sphingomonas faeni sp. nov., air- and dustborne and Antarctic, orange-pigmented, psychrotolerant bacteria, and emended description of the genus Sphingomonas. Int J Syst Evol Microbiol 2003; 53:1253–1260 [View Article][PubMed]
    [Google Scholar]
  6. Chen H, Jogler M, Rohde M, Klenk HP, Busse HJ et al. Reclassification and emended description of Caulobacter leidyi as Sphingomonas leidyi comb. nov., and emendation of the genus Sphingomonas. Int J Syst Evol Microbiol 2012; 62:2835–2843 [View Article][PubMed]
    [Google Scholar]
  7. Feng GD, Yang SZ, Xiong X, Li HP, Zhu HH. Sphingomonas spermidinifaciens sp. nov., a novel bacterium containing spermidine as the major polyamine, isolated from an abandoned lead-zinc mine and emended descriptions of the genus Sphingomonas and the species Sphingomonas yantingensis and Sphingomonas japonica. Int J Syst Evol Microbiol 2017; 67:2160–2165 [View Article][PubMed]
    [Google Scholar]
  8. Euzéby JP. List of bacterial names with standing in nomenclature: a folder available on the internet. Int J Syst Bacteriol 1997; 47:590–592 [View Article][PubMed]
    [Google Scholar]
  9. Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Biochemistry 1997; 74:5463–5467
    [Google Scholar]
  10. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed]
    [Google Scholar]
  11. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed]
    [Google Scholar]
  12. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article][PubMed]
    [Google Scholar]
  13. Tamura K, Peterson D, Peterson N, Stecher G, Nei M et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011; 28:2731–2739 [View Article][PubMed]
    [Google Scholar]
  14. Luo R, Liu B, Xie Y, Li Z, Huang W et al. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 2012; 1:18 [View Article][PubMed]
    [Google Scholar]
  15. MacFaddin JF. Biochemical Tests for the Identification of Medical Bacteria, 3rd ed. Baltimore, MD: Williams & Wilkins; 2000
    [Google Scholar]
  16. Chung YC, Kobayashi T, Kanai H, Akiba T, Kudo T. Purification and properties of extracellular amylase from the hyperthermophilic archaeon Thermococcus profundus DT5432. Appl Environ Microbiol 1995; 61:1502–1506[PubMed]
    [Google Scholar]
  17. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  18. Kates M. Techniques of Lipidology, 2nd ed. Amsterdam: Elsevier; 1986
    [Google Scholar]
  19. Busse H-J, Bunka S, Hensel A, Lubitz W. Discrimination of members of the family Pasteurellaceae based on polyamine patterns. Int J Syst Bacteriol 1997; 47:698–708 [View Article]
    [Google Scholar]
  20. Takeuchi M, Kawai F, Shimada Y, Yokota A. Taxonomic study of polyethylene glycol-utilizing bacteria: emended description of the genus Sphingomonas and new descriptions of Sphingomonas macrogoltabidus sp. nov., Sphingomonas sanguis sp. nov. and Sphingomonas terrae sp. nov. Syst Appl Microbiol 1993; 16:227–238 [View Article]
    [Google Scholar]
  21. Busse HJ, Kämpfer P, Denner EB. Chemotaxonomic characterisation of Sphingomonas. J Ind Microbiol Biotechnol 1999; 23:242–251 [View Article][PubMed]
    [Google Scholar]
  22. Kämpfer P, Meurer U, Esser M, Hirsch T, Busse HJ. Sphingomonas pseudosanguinis sp. nov., isolated from the water reservoir of an air humidifier. Int J Syst Evol Microbiol 2007; 57:1342–1345 [View Article][PubMed]
    [Google Scholar]
  23. Choi TE, Liu QM, Yang JE, Sun S, Kim SY et al. Sphingomonas ginsenosidimutans sp. nov., with ginsenoside converting activity. J Microbiol 2010; 48:760–766 [View Article][PubMed]
    [Google Scholar]
  24. Huang HY, Li J, Zhao GZ, Zhu WY, Yang LL et al. Sphingomonas endophytica sp. nov., isolated from Artemisia annua L. Int J Syst Evol Microbiol 2012; 62:1576–1580 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002910
Loading
/content/journal/ijsem/10.1099/ijsem.0.002910
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error