1887

Abstract

A Gram-negative, aerobic, motile and short-rod-shaped bacterium, designated strain 5T4P-12-1, was isolated from a piece of surface-sterilized bark of Aegiceras corniculatum collected from Cotai Ecological Zones in Macao, China and tested by a polyphasic approach to clarify its taxonomic position. Strain 5T4P-12-1 grew optimally with 0–1 % (w/v) NaCl at 30 °C and at pH 7.0–8.0. The 16S rRNA gene sequence of strain 5T4P-12-1 had the highest similarity (96.7 %) to Aureimonas altamirensis DSM 21988. Phylogenic analysis based on 16S rRNA gene sequences and coding sequences of 98 protein clusters showed that the strain represented a novel genus of the family Aurantimonadaceae . The predominant quinone system of strain 5T4P-12-1 was ubiquinone 10. The polar lipid profile contained diphosphatidylglycerol, phosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, phosphatidylmethylethanolamine, an unidentified aminophospholipid, three unidentified aminolipids, three unidentified phospholipids and three unidentified lipids. The major fatty acids (>10 % of total fatty acids) were C18 : 1ω7c (55.4 %) and C18 : 1 2-OH (15.6 %). The DNA G+C content of strain 5T4P-12-1 was 66.5 mol%. Based on the phylogenic, phenotypic and chemotaxonomic features, strain 5T4P-12-1 is considered to represent a novel species of a new genus in the family Aurantimonadaceae , for which the name Mangrovicella endophytica gen. nov., sp. nov. is proposed. The type strain is 5T4P-12-1 (=KCTC 62053=CGMCC 1.16279 ).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002907
2018-07-16
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/9/2838.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002907&mimeType=html&fmt=ahah

References

  1. Kuykendall LD. Order VI. Rhizobiales ord. nov. In Brenner DJ, Krieg NR, Staley JT, Garrity GM. (editors) Bergey’s Manual Of systematic Bacteriology, the Proteobacteria, Part C, the Alpha-, Beta-, Delta-, and epsilonproteobacteria, 2nd ed.vol. 2 New York: Springer; 2005; p.324
    [Google Scholar]
  2. Liang J, Liu J, Zhang XH. Jiella aquimaris gen. nov., sp. nov., isolated from offshore surface seawater. Int J Syst Evol Microbiol 2015;65:1127–1132 [CrossRef][PubMed]
    [Google Scholar]
  3. Denner EB, Smith GW, Busse HJ, Schumann P, Narzt T et al. Aurantimonas coralicida gen. nov., sp. nov., the causative agent of white plague type II on Caribbean scleractinian corals. Int J Syst Evol Microbiol 2003;53:1115–1122 [CrossRef][PubMed]
    [Google Scholar]
  4. Cho JC, Giovannoni SJ. Fulvimarina pelagi gen. nov., sp. nov., a marine bacterium that forms a deep evolutionary lineage of descent in the order "Rhizobiales". Int J Syst Evol Microbiol 2003;53:1853–1859 [CrossRef][PubMed]
    [Google Scholar]
  5. Rivas R, Sánchez-Márquez S, Mateos PF, Martínez-Molina E, Velázquez E et al. Martelella mediterranea gen. nov., sp. nov., a novel α-proteobacterium isolated from a subterranean saline lake. Int J Syst Evol Microbiol 2005;55:955–959 [CrossRef][PubMed]
    [Google Scholar]
  6. Rathsack K, Reitner J, Stackebrandt E, Tindall BJ. Reclassification of Aurantimonas altamirensis (Jurado et al. 2006), Aurantimonas ureilytica (Weon et al. 2007) and Aurantimonas frigidaquae (Kim et al. 2008) as members of a new genus, Aureimonas gen. nov., as Aureimonas altamirensis gen. nov., comb. nov., Aureimonas ureilytica comb. nov. and Aureimonas frigidaquae comb. nov., and emended descriptions of the genera Aurantimonas and Fulvimarina. Int J Syst Evol Microbiol 2011;61:2722–2728 [CrossRef][PubMed]
    [Google Scholar]
  7. Qin S, Wang HB, Chen HH, Zhang YQ, Jiang CL et al. Glycomyces endophyticus sp. nov., an endophytic actinomycete isolated from the root of Carex baccans Nees. Int J Syst Evol Microbiol 2008;58:2525–2528 [CrossRef][PubMed]
    [Google Scholar]
  8. Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol 1966;16:313–340
    [Google Scholar]
  9. Li WJ, Xu P, Schumann P, Zhang YQ, Pukall R et al. Georgenia ruanii sp. nov., a novel actinobacterium isolated from forest soil in Yunnan (China), and emended description of the genus Georgenia. Int J Syst Evol Microbiol 2007;57:1424–1428 [CrossRef][PubMed]
    [Google Scholar]
  10. Delong EF. Archaea in coastal marine environments. Proc Natl Acad Sci USA 1992;89:5685–5689 [CrossRef][PubMed]
    [Google Scholar]
  11. Li FN, Tuo L, Pan Z, Guo M, Lee SM et al. Aureimonas endophytica sp. nov., a novel endophytic bacterium isolated from Aegiceras corniculatum. Int J Syst Evol Microbiol 2017;67:2934–2940 [CrossRef][PubMed]
    [Google Scholar]
  12. Swindell SR, Plasterer TN. SEQMAN. Contig assembly. Methods Mol Biol 1997;70:75–89[PubMed]
    [Google Scholar]
  13. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67:1613–1617 [CrossRef][PubMed]
    [Google Scholar]
  14. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425 [CrossRef][PubMed]
    [Google Scholar]
  15. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376[PubMed]
    [Google Scholar]
  16. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971;20:406–416
    [Google Scholar]
  17. Tamura K, Peterson D, Peterson N, Stecher G, Nei M et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011;28:2731–2739 [CrossRef][PubMed]
    [Google Scholar]
  18. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980;16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  19. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39:783–791 [CrossRef][PubMed]
    [Google Scholar]
  20. Marmur J. A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 1961;3:208–218
    [Google Scholar]
  21. Chen Y, Chen Y, Shi C, Huang Z, Zhang Y et al. SOAPnuke: a MapReduce acceleration-supported software for integrated quality control and preprocessing of high-throughput sequencing data. Gigascience 2018;7:1–6 [CrossRef][PubMed]
    [Google Scholar]
  22. Peng Y, Leung HC, Yiu SM, Chin FY. IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics 2012;28:1420–1428 [CrossRef][PubMed]
    [Google Scholar]
  23. Delcher AL, Bratke KA, Powers EC, Salzberg SL. Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics 2007;23:673–679 [CrossRef][PubMed]
    [Google Scholar]
  24. Li W, Godzik A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 2006;22:1658–1659 [CrossRef][PubMed]
    [Google Scholar]
  25. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004;32:1792–1797 [CrossRef][PubMed]
    [Google Scholar]
  26. Guo B, Liu Y, Gu Z, Shen L, Liu K et al. Aureimonas glaciei sp. nov., isolated from an ice core. Int J Syst Evol Microbiol 2017;67:485–488 [CrossRef][PubMed]
    [Google Scholar]
  27. Liu BB, Wang HF, Li QL, Zhou XK, Zhang YG et al. Aurantimonas endophytica sp. nov., a novel endophytic bacterium isolated from roots of Anabasis elatior (C. A. Mey.) Schischk. Int J Syst Evol Microbiol 2016;66:4112–4117 [CrossRef][PubMed]
    [Google Scholar]
  28. Magee CM, Rodeheaver G, Edgerton MT, Edlich RF. A more reliable gram staining technic for diagnosis of surgical infections. Am J Surg 1975;130:341–346[PubMed]
    [Google Scholar]
  29. Kelly KL. Inter-Society Color Council-National Bureau of Standards Color name Charts illustrated with Centroid Colors Washington, DC: US Government Printing Office; 1964
    [Google Scholar]
  30. Xu P, Li WJ, Tang SK, Zhang YQ, Chen GZ et al. Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family 'Oxalobacteraceae' isolated from China. Int J Syst Evol Microbiol 2005;55:1149–1153 [CrossRef][PubMed]
    [Google Scholar]
  31. Cappuccino JG, Sherman N. Microbiology: A Laboratory Manual, 6th ed. San Francisco: Benjamin Cummings Pearson Education; 2002
    [Google Scholar]
  32. Gonzalez C, Gutierrez C, Ramirez C. Halobacterium vallismortis sp. nov. an amylolytic and carbohydrate-metabolizing, extremely halophilic bacterium. Can J Microbiol 1978;24:710–715 [CrossRef][PubMed]
    [Google Scholar]
  33. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI inc; 1990
    [Google Scholar]
  34. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977;100:221–230 [CrossRef][PubMed]
    [Google Scholar]
  35. Guo L, Tuo L, Habden X, Zhang Y, Liu J et al. Allosalinactinospora lopnorensis gen. nov., sp. nov., a new member of the family Nocardiopsaceae isolated from soil. Int J Syst Evol Microbiol 2015;65:206–213 [CrossRef][PubMed]
    [Google Scholar]
  36. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984;2:233–241
    [Google Scholar]
  37. Jurado V, Gonzalez JM, Laiz L, Saiz-Jimenez C. Aurantimonas altamirensis sp. nov., a member of the order Rhizobiales isolated from Altamira Cave. Int J Syst Evol Microbiol 2006;56:2583–2585 [CrossRef][PubMed]
    [Google Scholar]
  38. Weon HY, Kim BY, Yoo SH, Joa JH, Lee KH et al. Aurantimonas ureilytica sp. nov., isolated from an air sample. Int J Syst Evol Microbiol 2007;57:1717–1720 [CrossRef][PubMed]
    [Google Scholar]
  39. Kim MS, Hoa KT, Baik KS, Park SC, Seong CN. Aurantimonas frigidaquae sp. nov., isolated from a water-cooling system. Int J Syst Evol Microbiol 2008;58:1142–1146 [CrossRef][PubMed]
    [Google Scholar]
  40. Anderson CR, Dick GJ, Chu ML, Cho JC, Davis RE et al. Aurantimonas manganoxydans, sp. nov. and Aurantimonas litoralis, sp. nov.: Mn(II) oxidizing representatives of a globally distributed clade of alpha-Proteobacteria from the order Rhizobiales. Geomicrobiol J 2009;26:189–198 [CrossRef][PubMed]
    [Google Scholar]
  41. Lin SY, Hameed A, Liu YC, Hsu YH, Lai WA et al. Aureimonas ferruginea sp. nov. and Aureimonas rubiginis sp. nov., two siderophore-producing bacteria isolated from rusty iron plates. Int J Syst Evol Microbiol 2013;63:2430–2435 [CrossRef][PubMed]
    [Google Scholar]
  42. Madhaiyan M, Hu CJ, Jegan Roy J, Kim SJ, Weon HY et al. Aureimonas jatrophae sp. nov. and Aureimonas phyllosphaerae sp. nov., leaf-associated bacteria isolated from Jatropha curcas L. Int J Syst Evol Microbiol 2013;63:1702–1708 [CrossRef][PubMed]
    [Google Scholar]
  43. Ren F, Zhang L, Song L, Xu S, Xi L et al. Fulvimarina manganoxydans sp. nov., isolated from a deep-sea hydrothermal plume in the south-west Indian Ocean. Int J Syst Evol Microbiol 2014;64:2920–2925 [CrossRef][PubMed]
    [Google Scholar]
  44. Aydogan EL, Busse HJ, Moser G, Müller C, Kämpfer P et al. Aureimonas galii sp. nov. and Aureimonas pseudogalii sp. nov. isolated from the phyllosphere of Galium album. Int J Syst Evol Microbiol 2016;66:3345–3354 [CrossRef][PubMed]
    [Google Scholar]
  45. Chung EJ, Hwang JM, Kim KH, Jeon CO, Chung YR. Martelella suaedae sp. nov. and Martelella limonii sp. nov., isolated from the root of halophytes. Int J Syst Evol Microbiol 2016;66:3917–3922 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002907
Loading
/content/journal/ijsem/10.1099/ijsem.0.002907
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error