1887

Abstract

The gut of insects harbors a yeast community that is still poorly understood. Here, a novel species of the ascomycetous genus Blastobotrys is proposed based on a yeast strain isolated from the larval gut of the silkworm Bombyx mori (Order Lepidoptera). The novel species is closely related to Blastobotrys aristata and Blastobotrys elegans on the basis of the results of molecular phylogenetic analyses. A preliminary screening revealed that it produces 1.5 g l ethanol by fermenting 5 % d-xylose. The novel species, that represents the first report, to our knowledge, of yeast isolation from silkworms, is described as Blastobotrys bombycis sp. nov. (type strain RAAB001=CBS 15274=PYCC 8105=MCC 1427; MycoBank accession number MB 825095).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002890
2018-06-27
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/8/2638.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002890&mimeType=html&fmt=ahah

References

  1. Lachance MA, Bowles JM, Starmer WT. Geography and niche occupancy as determinants of yeast biodiversity: the yeast–insect–morning glory ecosystem of Kīpuka Puaulu, Hawai'i. FEMS Yeast Res 2003;4:105–111 [CrossRef][PubMed]
    [Google Scholar]
  2. Lachance MA, Dobson J, Wijayanayaka DN, Smith AM. The use of parsimony network analysis for the formal delineation of phylogenetic species of yeasts: Candida apicola, Candida azyma, and Candida parazyma sp. nov., cosmopolitan yeasts associated with floricolous insects. Antonie van Leeuwenhoek 2010;97:155–170 [CrossRef][PubMed]
    [Google Scholar]
  3. de Vega C, Guzmán B, Lachance MA, Steenhuisen SL, Johnson SD et al. Metschnikowia proteae sp. nov., a nectarivorous insect-associated yeast species from Africa. Int J Syst Evol Microbiol 2012;62:2538–2545 [CrossRef][PubMed]
    [Google Scholar]
  4. Suh SO, McHugh JV, Pollock DD, Blackwell M. The beetle gut: a hyperdiverse source of novel yeasts. Mycol Res 2005;109:261–265 [CrossRef][PubMed]
    [Google Scholar]
  5. Suh SO, Blackwell M. Four new yeasts in the Candida mesenterica clade associated with basidiocarp-feeding beetles. Mycologia 2005;97:167–177 [CrossRef][PubMed]
    [Google Scholar]
  6. Nguyen NH, Suh SO, Blackwell M. Five novel Candida species in insect-associated yeast clades isolated from Neuroptera and other insects. Mycologia 2007;99:842–858 [CrossRef][PubMed]
    [Google Scholar]
  7. Suh SO, Zhou J. Yeasts associated with the curculionid beetle Xyloterinus politus: Candida xyloterini sp. nov., Candida palmyrensis sp. nov. and three common ambrosia yeasts. Int J Syst Evol Microbiol 2010;60:1702–1708 [CrossRef][PubMed]
    [Google Scholar]
  8. Suh SO, Zhou JJ. Kazachstania intestinalis sp. nov., an ascosporogenous yeast from the gut of passalid beetle Odontotaenius disjunctus. Antonie van Leeuwenhoek 2011;100:109–115 [CrossRef][PubMed]
    [Google Scholar]
  9. Gujjari P, Suh SO, Lee CF, Zhou JJ. Trichosporon xylopini sp. nov., a hemicellulose-degrading yeast isolated from the wood-inhabiting beetle Xylopinus saperdioides. Int J Syst Evol Microbiol 2011;61:2538–2542 [CrossRef][PubMed]
    [Google Scholar]
  10. Houseknecht JL, Hart EL, Suh SO, Zhou JJ. Yeasts in the Sugiyamaella clade associated with wood-ingesting beetles and the proposal of Candida bullrunensis sp. nov. Int J Syst Evol Microbiol 2011;61:1751–1756 [CrossRef][PubMed]
    [Google Scholar]
  11. Vega FE, Dowd PF. The role of yeasts as insect endosymbionts. In Insect–Fungal Associations Ecology and Evolution 2005; pp.211–243
    [Google Scholar]
  12. Nieukerken van, Erik J, Kaila L, Kitching IJ, Kristensen N et al. Order Lepidoptera Linnaeus, 1758. In Zhang ZQ. (editor) Animal Biodiversity: an Outline of Higher-Level classification and Survey of Taxonomic Richness Auckland, New Zealand: Magnolia Press; 2011; pp.212–221
    [Google Scholar]
  13. Gonzalez F. Symbiosis between yeasts and insects. Introd Pap Fac Landsc Archit Hortic Crop Prod Sci 2014;1–52
    [Google Scholar]
  14. Anand AA, Vennison SJ, Sankar SG, Prabhu DI, Vasan PT et al. Isolation and characterization of bacteria from the gut of Bombyx mori that degrade cellulose, xylan, pectin and starch and their impact on digestion. J Insect Sci 2010;10:1–20 [CrossRef][PubMed]
    [Google Scholar]
  15. Kalpana S, Hatha AAM, Lakshmanaperumalsamy P. Gut microflora of the larva of silkworm, Bombyx mori. Int J Trop Insect Sci 1994;15:499–502 [CrossRef]
    [Google Scholar]
  16. Nguyen MT, Nam SH, Park HR, Han MS. Taxonomic characteristics of six species of entomopathogenic fungi isolated from the silkworm, Bombyx mori. Int J Ind Entomol 2004;9:229–234
    [Google Scholar]
  17. Pimenta RS, Alves PD, Corrêa A, Lachance MA, Prasad GS et al. Geotrichum silvicola sp. nov., a novel asexual arthroconidial yeast species related to the genus Galactomyces. Int J Syst Evol Microbiol 2005;55:497–501 [CrossRef][PubMed]
    [Google Scholar]
  18. Von KA. Blastobotrys nivea gen. nov. sp. nov. Arch Mikrobiol 1967;58:92
    [Google Scholar]
  19. Kurtzman CP, Robnett CJ. Molecular relationships among hyphal ascomycetous yeasts and yeastlike taxa. Can J Bot 1995;73:824–830 [CrossRef]
    [Google Scholar]
  20. Kurtzman CP, Robnett CJ. Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. Antonie van Leeuwenhoek 1998;73:331–371 [CrossRef][PubMed]
    [Google Scholar]
  21. Kurtzman CP, Robnett CJ. Multigene phylogenetic analysis of the Trichomonascus, Wickerhamiella and Zygoascus yeast clades, and the proposal of Sugiyamaella gen. nov. and 14 new species combinations. FEMS Yeast Res 2007;7:141–151 [CrossRef][PubMed]
    [Google Scholar]
  22. Smith MT, de Hoog GS, Statzell-Tallman A, Kurtzman CP. Blastobotrys von Klopotek (1967). In Kurtzman CP, Fell JW, Boekhout T. (editors) The Yeasts, a Taxonomic Study, 5th ed. Amsterdam: Elsevier; 1967
    [Google Scholar]
  23. Crous PW, Wingfield MJ, Richardson DM, Le Roux JJ, Strasberg D et al. Fungal Planet description sheets: 400–468. Persoonia 2016;36:316–458 [CrossRef][PubMed]
    [Google Scholar]
  24. Yarrow D. Methods for the isolation, maintenance and identification of yeasts. The Yeasts Amsterdam: Elsevier Science; 1998; pp.77–100
    [Google Scholar]
  25. Barnett JA, Payne RW, Yarrow D. Yeast, Characteristics and Identificationvol. 3 Cambridge: Cambridge Univ; 2000; pp.1150
    [Google Scholar]
  26. Aamir S. A rapid and efficient method of fungal genomic DNA extraction, suitable for PCR based molecular methods. Plant Pathol Quar 2015;5:74–81 [CrossRef]
    [Google Scholar]
  27. Kurtzman CP, Robnett CJ. Phylogenetic relationships among yeasts of the 'Saccharomyces complex' determined from multigene sequence analyses. FEMS Yeast Res 2003;3:417–432 [CrossRef][PubMed]
    [Google Scholar]
  28. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33:1870–1874 [CrossRef][PubMed]
    [Google Scholar]
  29. Acevedo A, Conejeros R, Aroca G. Ethanol production improvement driven by genome-scale metabolic modeling and sensitivity analysis in Scheffersomyces stipitis. PLoS One 2017;12:e0180074 [CrossRef][PubMed]
    [Google Scholar]
  30. Cadete RM, Rosa CA. The yeasts of the genus Spathaspora: potential candidates for second-generation biofuel production. Yeast 2018;35:191–199 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002890
Loading
/content/journal/ijsem/10.1099/ijsem.0.002890
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error