1887

Abstract

Nine Gram-negative, rod-shaped bacteria were isolated from Lebeckia ambigua root nodules. All strains were able to nodulate and fix nitrogen with Lebeckia ambigua apart from WSM4178, WSM4181 and WSM4182. Based on the 16S rRNA gene phylogeny, all strains were closely related to Paraburkholderia species (98.4–99.9 %), belonging to the Betaproteobacteria class and Burkholderiaceae family. According to 16S rRNA gene phylogeny the closest relative for WSM4174–WSM4177 and WSM4179–WSM4180 was Paraburkholderia tuberum (99.80–99.86 %), for WSM4178 was Paraburkholderia caledonica (98.42 %) and for WSM4181–WSM4182 was Paraburkholderia graminis (99.79 %). Analysis of the gyrB and recA housekeeping genes supported the assignment of WSM4181–WSM4182 to P. graminis and the other investigated strains could be assigned to the genus Paraburkholderia . The results of DNA–DNA hybridization, physiological and biochemical tests allowed genotypic and phenotypic differentiation of WSM4178 from the closest validly published Paraburkholderia species. However, WSM4174–WSM4177 and WSM4179–WSM4180 could not reliably be distinguished from its closest neighbour and therefore complete genome comparison was performed between WSM4176 and P. tuberum STM678 which gave ANI values of 96–97 %. Chemotaxonomic data, including fatty acid profiles and quinone data supported the assignment of the strains to the genus Paraburkholderia . On the basis of genotypic and phenotypic data one novel species, Paraburkholderia fynbosensis sp. nov. (WSM4178=LMG 27177=HAMBI 3356), is proposed and the isolation of P. tuberum and P. graminis from root nodules of Lebeckia ambigua is reported.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002884
2018-06-29
2019-12-06
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/8/2607.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002884&mimeType=html&fmt=ahah

References

  1. Gyaneshwar P, Hirsch AM, Moulin L, Chen WM, Elliott GN et al. Legume-nodulating betaproteobacteria: diversity, host range, and future prospects. Mol Plant Microbe Interact 2011;24:1276–1288 [CrossRef][PubMed]
    [Google Scholar]
  2. Dobritsa AP, Samadpour M. Transfer of eleven species of the genus Burkholderia to the genus Paraburkholderia and proposal of Caballeronia gen. nov. to accommodate twelve species of the genera Burkholderia and Paraburkholderia. Int J Syst Evol Microbiol 2016;66:2836–2846 [CrossRef][PubMed]
    [Google Scholar]
  3. Mavengere NR, Ellis AG, Le Roux JJ. Burkholderia aspalathi sp. nov., isolated from root nodules of the South African legume Aspalathus abietina Thunb. Int J Syst Evol Microbiol 2014;64:1906–1912 [CrossRef][PubMed]
    [Google Scholar]
  4. Martínez-Aguilar L, Salazar-Salazar C, Méndez RD, Caballero-Mellado J, Hirsch AM et al. Burkholderia caballeronis sp. nov., a nitrogen fixing species isolated from tomato (Lycopersicon esculentum) with the ability to effectively nodulate Phaseolus vulgaris. Antonie van Leeuwenhoek 2013;104:1063–1071 [CrossRef][PubMed]
    [Google Scholar]
  5. Chen WM, Moulin L, Bontemps C, Vandamme P, Béna G et al. Legume symbiotic nitrogen fixation by beta-proteobacteria is widespread in nature. J Bacteriol 2003;185:7266–7272 [CrossRef][PubMed]
    [Google Scholar]
  6. Sheu SY, Chou JH, Bontemps C, Elliott GN, Gross E et al. Burkholderia diazotrophica sp. nov., isolated from root nodules of Mimosa spp. Int J Syst Evol Microbiol 2013;63:435–441 [CrossRef][PubMed]
    [Google Scholar]
  7. de Meyer SE, Cnockaert M, Ardley JK, van Wyk BE, Vandamme PA et al. Burkholderia dilworthii sp. nov., isolated from Lebeckia ambigua root nodules. Int J Syst Evol Microbiol 2014;64:1090–1095 [CrossRef][PubMed]
    [Google Scholar]
  8. Chen WM, James EK, Coenye T, Chou JH, Barrios E et al. Burkholderia mimosarum sp. nov., isolated from root nodules of Mimosa spp. from Taiwan and South America. Int J Syst Evol Microbiol 2006;56:1847–1851 [CrossRef][PubMed]
    [Google Scholar]
  9. Chen WM, de Faria SM, James EK, Elliott GN, Lin KY et al. Burkholderia nodosa sp. nov., isolated from root nodules of the woody Brazilian legumes Mimosa bimucronata and Mimosa scabrella. Int J Syst Evol Microbiol 2007;57:1055–1059 [CrossRef][PubMed]
    [Google Scholar]
  10. de Oliveira Cunha C, Goda Zuleta LF, Paula de Almeida LG, Prioli Ciapina L, Lustrino Borges W et al. Complete genome sequence of Burkholderia phenoliruptrix BR3459a (CLA1), a heat-tolerant, nitrogen-fixing symbiont of Mimosa flocculosa. J Bacteriol 2012;194:6675–6676 [CrossRef][PubMed]
    [Google Scholar]
  11. Vandamme P, Goris J, Chen WM, de Vos P, Willems A. Burkholderia tuberum sp. nov. and Burkholderia phymatum sp. nov., nodulate the roots of tropical legumes. Syst Appl Microbiol 2002;25:507–512 [CrossRef][PubMed]
    [Google Scholar]
  12. Bournaud C, Moulin L, Cnockaert M, Faria S, Prin Y et al. Paraburkholderia piptadeniae sp. nov. and Paraburkholderia ribeironis sp. nov., two root-nodulating symbiotic species of Piptadenia gonoacantha in Brazil. Int J Syst Evol Microbiol 2017;67:432–440 [CrossRef][PubMed]
    [Google Scholar]
  13. De Meyer SE, Cnockaert M, Ardley JK, Trengove RD, Garau G et al. Burkholderia rhynchosiae sp. nov., isolated from Rhynchosia ferulifolia root nodules. Int J Syst Evol Microbiol 2013;63:3944–3949 [CrossRef][PubMed]
    [Google Scholar]
  14. Chen WM, de Faria SM, Chou JH, James EK, Elliott GN et al. Burkholderia sabiae sp. nov., isolated from root nodules of Mimosa caesalpiniifolia. Int J Syst Evol Microbiol 2008;58:2174–2179 [CrossRef][PubMed]
    [Google Scholar]
  15. De Meyer SE, Cnockaert M, Ardley JK, Maker G, Yates R et al. Burkholderia sprentiae sp. nov., isolated from Lebeckia ambigua root nodules. Int J Syst Evol Microbiol 2013;63:3950–3957 [CrossRef][PubMed]
    [Google Scholar]
  16. Sheu SY, Chou JH, Bontemps C, Elliott GN, Gross E et al. Burkholderia symbiotica sp. nov., isolated from root nodules of Mimosa spp. native to north-east Brazil. Int J Syst Evol Microbiol 2012;62:2272–2278 [CrossRef][PubMed]
    [Google Scholar]
  17. Elliott GN, Chen WM, Bontemps C, Chou JH, Young JP et al. Nodulation of Cyclopia spp. (Leguminosae, Papilionoideae) by Burkholderia tuberum. Ann Bot 2007;100:1403–1411 [CrossRef][PubMed]
    [Google Scholar]
  18. Beukes CW, Venter SN, Law IJ, Phalane FL, Steenkamp ET. South African papilionoid legumes are nodulated by diverse Burkholderia with unique nodulation and nitrogen-fixation loci. PLoS One 2013;8:e68406 [CrossRef][PubMed]
    [Google Scholar]
  19. Howieson JG, De Meyer SE, Vivas-Marfisi A, Ratnayake S, Ardley JK et al. Novel Burkholderia bacteria isolated from Lebeckia ambigua – a perennial suffrutescent legume of the fynbos. Soil Biol Biochem 2013;60:55–64 [CrossRef]
    [Google Scholar]
  20. De Meyer SE, de Beuf K, Vekeman B, Willems A. A large diversity of non-rhizobial endophytes found in legume root nodules in Flanders (Belgium). Soil Biol Biochem 2015;83:1–11 [CrossRef]
    [Google Scholar]
  21. Dudeja SS, Giri R, Saini R, Suneja-Madan P, Kothe E. Interaction of endophytic microbes with legumes. J Basic Microbiol 2012;52:248–260 [CrossRef][PubMed]
    [Google Scholar]
  22. Ndlovu J, Richardson DM, Wilson JRU, Le Roux JJ. Co-invasion of South African ecosystems by an Australian legume and its rhizobial symbionts. J Biogeogr 2013;40:1240–1251 [CrossRef]
    [Google Scholar]
  23. Viallard V, Poirier I, Cournoyer B, Haurat J, Wiebkin S et al. Burkholderia graminis sp. nov., a rhizospheric Burkholderia species, and reassessment of [Pseudomonas] phenazinium, [Pseudomonas] pyrrocinia and [Pseudomonas] glathei as Burkholderia. Int J Syst Bacteriol 1998;48:549–563 [CrossRef][PubMed]
    [Google Scholar]
  24. Compant S, Nowak J, Coenye T, Clément C, Ait Barka E. Diversity and occurrence of Burkholderia spp. in the natural environment. FEMS Microbiol Rev 2008;32:607–626 [CrossRef][PubMed]
    [Google Scholar]
  25. Yates RJ, Howieson JG, Reeve WG, Nandasena KG, Law IJ et al. Lotononis angolensis forms nitrogen fixing, lupinoid nodules with phylogenetically unique, fast-growing, pink-pigmented bacteria, which do not nodulate L. bainesii or L. listii. Soil Biol Biochem 2007;39:1680–1688 [CrossRef]
    [Google Scholar]
  26. Pitcher DG, Saunders NA, Owen RJ. Rapid extraction of bacterial genomic DNA with guanidium thiocyanate. Lett Appl Microbiol 1989;8:151–156 [CrossRef]
    [Google Scholar]
  27. Gevers D, Huys G, Swings J. Applicability of rep-PCR fingerprinting for identification of Lactobacillus species. FEMS Microbiol Lett 2001;205:31–36 [CrossRef][PubMed]
    [Google Scholar]
  28. Ziegler D, Pothier JF, Ardley J, Fossou RK, Pflüger V et al. Ribosomal protein biomarkers provide root nodule bacterial identification by MALDI-TOF MS. Appl Microbiol Biotechnol 2015;99:5547–5562 [CrossRef][PubMed]
    [Google Scholar]
  29. Vancanneyt M, Mengaud J, Cleenwerck I, Vanhonacker K, Hoste B et al. Reclassification of Lactobacillus kefirgranum Takizawa et al. 1994 as Lactobacillus kefiranofaciens subsp. kefirgranum subsp. nov. and emended description of L. kefiranofaciens Fujisawa et al. 1988. Int J Syst Evol Microbiol 2004;54:551–556 [CrossRef][PubMed]
    [Google Scholar]
  30. Kumar S, Stecher G, Tamura K. MEGA 7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;37:1870–1874
    [Google Scholar]
  31. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67:1613–1617 [CrossRef][PubMed]
    [Google Scholar]
  32. Farris JS, Kallersjo M, Kluge AG, Bult C. Testing significance of incongruence. Cladistics 1994;10:315–319 [CrossRef]
    [Google Scholar]
  33. Swofford DL. PAUP: Phylogenetic Analysis Using Parsimony, Version 3.1 Washington, DC: Smithsonian Institution; 1991
    [Google Scholar]
  34. Gouy M, Guindon S, Gascuel O. SeaView version 4: A multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol 2010;27:221–224 [CrossRef][PubMed]
    [Google Scholar]
  35. Cleenwerck I, Vandemeulebroecke K, Janssens D, Swings J. Re-examination of the genus Acetobacter, with descriptions of Acetobacter cerevisiae sp. nov. and Acetobacter malorum sp. nov. Int J Syst Evol Microbiol 2002;52:1551–1558 [CrossRef][PubMed]
    [Google Scholar]
  36. Ezaki T, Hashimoto Y, Yabuuchi E. Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 1989;39:224–229 [CrossRef]
    [Google Scholar]
  37. Goris J, Suzuki K, Vos PD, Nakase T, Kersters K. Evaluation of a microplate DNA–DNA hybridization method compared with the initial renaturation method. Can J Microbiol 1998;44:1148–1153 [CrossRef]
    [Google Scholar]
  38. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989;39:159–167 [CrossRef]
    [Google Scholar]
  39. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009;106:19126–19131 [CrossRef][PubMed]
    [Google Scholar]
  40. de Meyer SE, Tian R, Seshadri R, Reddy T, Markowitz V et al. High-quality permanent draft genome sequence of the Lebeckia ambigua-nodulating Burkholderia sp. strain WSM4176. Stand Genomic Sci 2015;10:79 [CrossRef][PubMed]
    [Google Scholar]
  41. Angus AA, Agapakis CM, Fong S, Yerrapragada S, Estrada-de Los Santos P et al. Plant-associated symbiotic Burkholderia species lack hallmark strategies required in mammalian pathogenesis. PLoS One 2014;9:e83779 [CrossRef][PubMed]
    [Google Scholar]
  42. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007;57:81–91 [CrossRef][PubMed]
    [Google Scholar]
  43. Vincent JM. A Manual for the Practical Study of the Root-Nodule Bacteria, International Biological Programme Handbook, 15th ed. Oxford, UK: Blackwell Scientific Pubilications; 1970
    [Google Scholar]
  44. Ardley JK, Parker MA, de Meyer SE, Trengove RD, O'Hara GW et al. Microvirga lupini sp. nov., Microvirga lotononidis sp. nov. and Microvirga zambiensis sp. nov. are alphaproteobacterial root-nodule bacteria that specifically nodulate and fix nitrogen with geographically and taxonomically separate legume hosts. Int J Syst Evol Microbiol 2012;62:2579–2588 [CrossRef][PubMed]
    [Google Scholar]
  45. Moulin L, Munive A, Dreyfus B, Boivin-Masson C. Nodulation of legumes by members of the beta-subclass of Proteobacteria. Nature 2001;411:948–950 [CrossRef][PubMed]
    [Google Scholar]
  46. De Meyer SE, van Hoorde K, Vekeman B, Braeckman T, Willems A. Genetic diversity of rhizobia associated with indigenous legumes in different regions of Flanders (Belgium). Soil Biol Biochem 2011;43:2384–2396 [CrossRef]
    [Google Scholar]
  47. De Meyer SE, Briscoe L, Martínez-Hidalgo P, Agapakis CM, de-Los Santos PE et al. Symbiotic Burkholderia species show diverse arrangements of nif/fix and nod genes and lack typical high-affinity cytochrome cbb3 oxidase genes. Mol Plant Microbe Interact 2016;29:609–619 [CrossRef][PubMed]
    [Google Scholar]
  48. Garau G, Yates RJ, Deiana P, Howieson JG. Novel strains of nodulating Burkholderia have a role in nitrogen fixation with papilionoid herbaceous legumes adapted to acid, infertile soils. Soil Biol Biochem 2009;41:125–134 [CrossRef]
    [Google Scholar]
  49. Bontemps C, Elliott GN, Simon MF, Dos Reis Júnior FB, Gross E et al. Burkholderia species are ancient symbionts of legumes. Mol Ecol 2010;19:44–52 [CrossRef][PubMed]
    [Google Scholar]
  50. Achouak W, Christen R, Barakat M, Martel MH, Heulin T. Burkholderia caribensis sp. nov., an exopolysaccharide-producing bacterium isolated from vertisol microaggregates in Martinique. Int J Syst Bacteriol 1999;49:787–794 [CrossRef][PubMed]
    [Google Scholar]
  51. Goris J, Dejonghe W, Falsen E, de Clerck E, Geeraerts B et al. Diversity of transconjugants that acquired plasmid pJP4 or pEMT1 after inoculation of a donor strain in the A- and B-horizon of an agricultural soil and description of Burkholderia hospita sp. nov. and Burkholderia terricola sp. nov. Syst Appl Microbiol 2002;25:340–352 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002884
Loading
/content/journal/ijsem/10.1099/ijsem.0.002884
Loading

Data & Media loading...

Supplements

Supplementary File 2

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error