1887

Abstract

An iron-oxidizing bacterium, designated strain An22, which was isolated from a paddy field soil in Anjo, Japan, was described taxonomically. Strain An22 was motile by a single polar flagellum, curved-rod, Gram-negative bacterium that was able to grow at 12–37 °C (optimally at 25–30 °C) and at pH 5.2–6.8 (pH 5.9–6.1). The strain grew microaerobically and autotrophically by oxidizing ferrous iron, but did not form stalks, a unique structure of iron oxides. The major cellular fatty acids were C16 : 0 and C16 : 1ω7c/C16 : 1ω6c. The major respiratory quinones were UQ-10 and UQ-8. The strain possessed ribulose-1,5-bisphosphate carboxylase/oxygenase indicating an autotrophic nature via the Calvin–Benson–Bassham cycle. The total DNA G+C content was 61.4 mol%. 16S rRNA gene sequence analysis revealed that strain An22 was affiliated with the class Betaproteobacteria and clustered with iron-oxidizing bacteria, Gallionella ferruginea Johan (94.8 % similarity) and Ferriphaselus amnicola OYT1 (94.4 %) in the family Gallionellaceae . Based on the low 16S rRNA gene sequence similarity to the phylogenetically closest genera and the combination of unique morphological, physiological and biochemical characteristics, strain An22 represents a novel genus and species within the family Gallionellaceae , for which the name Ferrigenium kumadai gen. nov., sp. nov. is proposed. The type strain is An22 (=JCM 30584=NBRC 112974=ATCC TSD-51).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002882
2018-06-26
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/8/2587.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002882&mimeType=html&fmt=ahah

References

  1. Hedrich S, Schlömann M, Johnson DB. The iron-oxidizing proteobacteria. Microbiology 2011; 157:1551–1564 [View Article][PubMed]
    [Google Scholar]
  2. Ehrenberg CG. Vorläufige Mittheilungen über das wirkliche Vorkommen fossiler Infusorien und ihre grosse Verbreitung. Ann Phys 1836; 114:213–227
    [Google Scholar]
  3. Roth AW. Catalecta botanica quibus plantae novae et minus cognitae describuntur atque illistrantur. Lipsiae, I.G. Mülleriano 1797
    [Google Scholar]
  4. Kützing FT. Phycologia Generales Leipzig: 1843
    [Google Scholar]
  5. Kato S, Chan C, Itoh T, Ohkuma M. Functional gene analysis of freshwater iron-rich flocs at circumneutral pH and isolation of a stalk-forming microaerophilic iron-oxidizing bacterium. Appl Environ Microbiol 2013; 79:5283–5290 [View Article][PubMed]
    [Google Scholar]
  6. Kato S, Krepski S, Chan C, Itoh T, Ohkuma M. Ferriphaselus amnicola gen. nov., sp. nov., a neutrophilic, stalk-forming, iron-oxidizing bacterium isolated from an iron-rich groundwater seep. Int J Syst Evol Microbiol 2014; 64:921–925 [View Article][PubMed]
    [Google Scholar]
  7. Emerson D, Moyer C. Isolation and characterization of novel iron-oxidizing bacteria that grow at circumneutral pH. Appl Environ Microbiol 1997; 63:4784–4792[PubMed]
    [Google Scholar]
  8. Emerson D, Field EK, Chertkov O, Davenport KW, Goodwin L et al. Comparative genomics of freshwater Fe-oxidizing bacteria: implications for physiology, ecology, and systematics. Front Microbiol 2013; 4:254 [View Article][PubMed]
    [Google Scholar]
  9. Weiss JV, Rentz JA, Plaia T, Neubauer SC, Merrill-Floyd M et al. Characterization of neutrophilic Fe(II)-oxidizing bacteria isolated from the rhizosphere of wetland plants and description of Ferritrophicum radicicola gen. nov. sp. nov., and Sideroxydans paludicola sp. nov. Geomicrobiol J 2007; 24:559–570
    [Google Scholar]
  10. Krepski ST, Hanson TE, Chan CS. Isolation and characterization of a novel biomineral stalk-forming iron-oxidizing bacterium from a circumneutral groundwater seep. Environ Microbiol 2012; 14:1671–1680 [View Article][PubMed]
    [Google Scholar]
  11. Kato S, Ohkuma M, Powell DH, Krepski ST, Oshima K et al. Comparative genomic insights into ecophysiology of neutrophilic, microaerophilic iron oxidizing bacteria. Front Microbiol 2015; 6:1265 [View Article][PubMed]
    [Google Scholar]
  12. Boden R, Hutt LP, Rae AW. Reclassification of Thiobacillus aquaesulis (Wood & Kelly, 1995) as Annwoodia aquaesulis gen. nov., comb. nov., transfer of Thiobacillus (Beijerinck, 1904) from the Hydrogenophilales to the Nitrosomonadales, proposal of Hydrogenophilalia class. nov. within the 'Proteobacteria', and four new families within the orders Nitrosomonadales and Rhodocyclales. Int J Syst Evol Microbiol 2017; 67:1191–1205 [View Article][PubMed]
    [Google Scholar]
  13. Watanabe T, Kojima H, Fukui M. Sulfuriferula multivorans gen. nov., sp. nov., isolated from a freshwater lake, reclassification of 'Thiobacillus plumbophilus' as Sulfuriferula plumbophilus sp. nov., and description of Sulfuricellaceae fam. nov. and Sulfuricellales ord. nov. Int J Syst Evol Microbiol 2015; 65:1504–1508 [View Article][PubMed]
    [Google Scholar]
  14. Watanabe T, Kojima H, Shinohara A, Fukui M. Sulfurirhabdus autotrophica gen. nov., sp. nov., isolated from a freshwater lake. Int J Syst Evol Microbiol 2016; 66:113–117 [View Article][PubMed]
    [Google Scholar]
  15. Kyuma K. Paddy Soil Science Kyoto: Kyoto University Press; 2004
    [Google Scholar]
  16. Watanabe T, Sumida H, Do NM, Yano K, Asakawa S et al. Bacterial consortia in iron-deposited colonies formed on paddy soil surface under microaerobic conditions. Soil Sci Plant Nutr 2013; 59:337–346 [View Article]
    [Google Scholar]
  17. Emerson D, Floyd MM. Enrichment and isolation of iron-oxidizing bacteria at neutral pH. Methods Enzymol 2005; 397:112–123 [View Article][PubMed]
    [Google Scholar]
  18. Widdel F, Bak F. Gram-negative mesophilic sulfate-reducing bacteria. In Balows A, Trüper HG, Dworkin M, Harder W, Schleifer KH et al. (editors) The Prokaryotes, 2nd ed. vol. 4Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications New York, NY: Springer; 1992 pp. 3352–3378
    [Google Scholar]
  19. Hucker GJ. A new modification and application of the Gram stain. J Bacteriol 1921; 6:395–397[PubMed]
    [Google Scholar]
  20. Nakayama N, Asakawa S, Kimura M. Frequency of phage-infected bacterial cells in the floodwater of a Japanese paddy field. Soil Biol Biochem 2009; 41:186–191
    [Google Scholar]
  21. Kato S, Kikuchi S, Kashiwabara T, Takahashi Y, Suzuki K et al. Prokaryotic abundance and community composition in a freshwater iron-rich microbial mat at circumneutral pH. Geomicrobiol J 2012; 29:896–905
    [Google Scholar]
  22. Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol 1959; 37:911–917 [View Article][PubMed]
    [Google Scholar]
  23. Tamaoka J, Katayama-Fujimura Y, Kuraishi H. Analysis of bacterial menaquinone mixtures by high performance liquid chromatography. J Appl Bacteriol 1983; 54:31–36[PubMed]
    [Google Scholar]
  24. Saito H, Miura KI. Preparation of transforming deoxyribonucleic acid by phenol treatment. Biochim Biophys Acta 1963; 72:619–629 [View Article][PubMed]
    [Google Scholar]
  25. Katayama-Fujimura Y, Komatsu Y, Kuraishi H, Kaneko T. Estimation of DNA base composition by high performance liquid chromatography of its nuclease P1 hydrolysate. Agric Biol Chem 1984; 48:3169–3172
    [Google Scholar]
  26. Tamaoka J, Komagata K. Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 1984; 25:125–128
    [Google Scholar]
  27. Maeda N, Kanai T, Atomi H, Imanaka T. The unique pentagonal structure of an archaeal Rubisco is essential for its high thermostability. J Biol Chem 2002; 277:31656–31662 [View Article][PubMed]
    [Google Scholar]
  28. Schloss JV, Phares EF, Long MV, Norton IL, Stringer CD et al. Ribulosebisphosphate carboxylase/oxygenase from Rhodospirillum rubrum. Methods Enzymol 1982; 90:522–528[PubMed]
    [Google Scholar]
  29. Khalifa A, Lee CG, Ogiso T, Ueno C, Dianou D et al. Methylomagnum ishizawai gen. nov., sp. nov., a mesophilic type I methanotroph isolated from rice rhizosphere. Int J Syst Evol Microbiol 2015; 65:3527–3534 [View Article][PubMed]
    [Google Scholar]
  30. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991; 173:697–703[PubMed]
    [Google Scholar]
  31. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed]
    [Google Scholar]
  32. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30:2725–2729 [View Article][PubMed]
    [Google Scholar]
  33. Hallbeck L, Pedersen K. Culture parameters regulating stalk formation and growth rate of Gallionella ferruginea. J Gen Microbiol 1990; 136:1675–1680
    [Google Scholar]
  34. Suzuki T, Hashimoto H, Matsumoto N, Furutani M, Kunoh H et al. Nanometer-scale visualization and structural analysis of the inorganic/organic hybrid structure of Gallionella ferruginea twisted stalks. Appl Environ Microbiol 2011; 77:2877–2881 [View Article][PubMed]
    [Google Scholar]
  35. Hanert HH. Genus Gallionella. In Staley JT, Bryant MP, Pfennig N, Holt JG. (editors) Bergey’s Manual of Systematic Bacteriology vol. 3 Baltimore, MD: Williams & Wilkins; 1989 pp. 1974–1979
    [Google Scholar]
  36. Hallbeck L, Pedersen K. Autotrophic and mixotrophic growth of Gallionella ferruginea. J Gen Microbiol 1991; 137:2657–2661 [View Article]
    [Google Scholar]
  37. Hallbeck L, Ståhl F, Pedersen K. Phylogeny and phenotypic characterization of the stalk-forming and iron-oxidizing bacterium Gallionella ferruginea. J Gen Microbiol 1993; 139:1531–1535 [View Article][PubMed]
    [Google Scholar]
  38. Hallbeck L, Pedersen K. Genus I. Gallionella. In Brenner DJ, Krieg NR, Staley JT, Garrity GM. (editors) Bergey’s Manual of Systematic Bacteriology, 2nd ed. vol. 2The Proteobacteria, Part C, The Alpha-, Beta-, Delta-, and Epsilonproteobacteria New York, NY: Springer; 2005 pp. 880–886
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002882
Loading
/content/journal/ijsem/10.1099/ijsem.0.002882
Loading

Data & Media loading...

Supplements

Supplementary File 2

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error