1887

Abstract

A Gram-staining-negative, aerobic, motile and rod-shaped bacterium, designated strain X1-8, was isolated from rhizosphere soil of Nicotiana tabacum L. collected from the tobacco produce base located in Kunming, south-west PR China. Cells showed oxidase-negative and catalase-positive reactions and were motile by means of peritrichous flagella. Growth occurred at 25–40 °C and pH 6.0–8.0 with optimal growth at 30–35 °C, pH 7.0. The major respiratory lipoquinone was Q-10. C16 : 0 and summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c) were identified as major cellular fatty acids. The profile of polar lipids contained diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylmethylethanolamine, sphingoglycolipid, phosphatidylcholine and one unidentified glycolipid. The major polyamine was sym-homospermidine. The genomic DNA G+C content was 66.5 mol%. The results of phylogenetic analysis based on 16S rRNA gene sequences indicated that X1-8 should be affiliated to the genus Sphingomonas and formed a clade with most closely related species Sphingomonas changbaiensis NBRC 104936. The results of 16S rRNA gene sequences similarity analysis indicated that X1-8 had the highest similarity with S. changbaiensis NBRC 104936 (98.4 %) and lower than 96.0 % with other species of the genus Sphingomonas . DNA–DNA hybridization data indicated that X1-8 represented a novel genomic species of the genus Sphingomonas . The characteristics determined in the polyphasic taxonomic study indicated that X1-8 represents a novel species of the genus Sphingomonas , for which the name Sphingomonas tabacisoli sp. nov. (type strain X1-8=KCTC 62032=CGMCC 1.16275) is proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002879
2018-06-26
2020-01-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/8/2574.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002879&mimeType=html&fmt=ahah

References

  1. Yabuuchi E, Yano I, Oyaizu H, Hashimoto Y, Ezaki T et al. Proposals of Sphingomonas paucimobilis gen. nov. and comb. nov., Sphingomonas parapaucimobilis sp. nov., Sphingomonas yanoikuyae sp. nov., Sphingomonas adhaesiva sp. nov., Sphingomonas capsulata comb. nov., and two genospecies of the genus Sphingomonas. Microbiol Immunol 1990;34:99–119 [CrossRef][PubMed]
    [Google Scholar]
  2. Takeuchi M, Hamana K, Hiraishi A. Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. Int J Syst Evol Microbiol 2001;51:1405–1417 [CrossRef][PubMed]
    [Google Scholar]
  3. Yabuuchi E, Kosako Y, Fujiwara N, Naka T, Matsunaga I et al. Emendation of the genus Sphingomonas Yabuuchi et al. 1990 and junior objective synonymy of the species of three genera, Sphingobium, Novosphingobium and Sphingopyxis, in conjunction with Blastomonas ursincola. Int J Syst Evol Microbiol 2002;52:1485–1496 [CrossRef][PubMed]
    [Google Scholar]
  4. Chen H, Jogler M, Rohde M, Klenk HP, Busse HJ et al. Reclassification and emended description of Caulobacter leidyi as Sphingomonas leidyi comb. nov., and emendation of the genus Sphingomonas. Int J Syst Evol Microbiol 2012;62:2835–2843 [CrossRef][PubMed]
    [Google Scholar]
  5. Zhang YQ, Chen YG, Li WJ, Tian XP, Xu LH et al. Sphingomonas yunnanensis sp. nov., a novel Gram-negative bacterium from a contaminated plate. Int J Syst Evol Microbiol 2005;55:2361–2364 [CrossRef][PubMed]
    [Google Scholar]
  6. Kawahara K, Kuraishi H, Zähringer U. Chemical structure and function of glycosphingolipids of Sphingomonas spp. and their distribution among members of the α-4 subclass of Proteobacteria. J Ind Microbiol Biotechnol 1999;23:408–413 [CrossRef][PubMed]
    [Google Scholar]
  7. Kaur J, Kaur J, Niharika N, Lal R. Sphingomonas laterariae sp. nov., isolated from a hexachlorocyclohexane-contaminated dump site. Int J Syst Evol Microbiol 2012;62:2891–2896 [CrossRef][PubMed]
    [Google Scholar]
  8. Liu D, Jin X, Sun X, Song Y, Feng L et al. Sphingomonas faucium sp. nov., isolated from canyon soil. Int J Syst Evol Microbiol 2016;66:2847–2852 [CrossRef][PubMed]
    [Google Scholar]
  9. Son HM, Yang JE, Park Y, Han CK, Kim SG et al. Sphingomonas kyungheensis sp. nov., a bacterium with ginsenoside-converting activity isolated from soil of a ginseng field. Int J Syst Evol Microbiol 2013;63:3848–3853 [CrossRef][PubMed]
    [Google Scholar]
  10. Zhang JY, Liu XY, Liu SJ. Sphingomonas changbaiensis sp. nov., isolated from forest soil. Int J Syst Evol Microbiol 2010;60:790–795 [CrossRef][PubMed]
    [Google Scholar]
  11. Ohta H, Hattori R, Ushiba Y, Mitsui H, Ito M et al. Sphingomonas oligophenolica sp. nov., a halo- and organo-sensitive oligotrophic bacterium from paddy soil that degrades phenolic acids at low concentrations. Int J Syst Evol Microbiol 2004;54:2185–2190 [CrossRef][PubMed]
    [Google Scholar]
  12. An DS, Liu QM, Lee HG, Jung MS, Kim SC et al. Sphingomonas ginsengisoli sp. nov. and Sphingomonas sediminicola sp. nov. Int J Syst Evol Microbiol 2013;63:496–501 [CrossRef][PubMed]
    [Google Scholar]
  13. Sheu SY, Chen YL, Chen WM. Sphingomonas fonticola sp. nov., isolated from spring water. Int J Syst Evol Microbiol 2015;65:4495–4502 [CrossRef][PubMed]
    [Google Scholar]
  14. Wübbeler JH, Oppermann-Sanio FB, Ockenfels A, Röttig A, Osthaar-Ebker A et al. Sphingomonas jeddahensis sp. nov., isolated from Saudi Arabian desert soil. Int J Syst Evol Microbiol 2017;67:4057–4063 [CrossRef][PubMed]
    [Google Scholar]
  15. Huang HY, Li J, Zhao GZ, Zhu WY, Yang LL et al. Sphingomonas endophytica sp. nov., isolated from Artemisia annua L. Int J Syst Evol Microbiol 2012;62:1576–1580 [CrossRef][PubMed]
    [Google Scholar]
  16. Reasoner DJ, Geldreich EE. A new medium for the enumeration and subculture of bacteria from potable water. Appl Environ Microbiol 1985;49:1–7[PubMed]
    [Google Scholar]
  17. Skerman VBD. A Guide to the Identification of the Genera of Bacteria, 2nd ed. Baltimore: Williams & Wilkins; 1967
    [Google Scholar]
  18. Gregersen T. Rapid method for distinction of Gram-negative from Gram-positive bacteria. Eur J Appl Microbiol Biotechnol 1978;5:123–127 [CrossRef]
    [Google Scholar]
  19. Xu P, Li WJ, Tang SK, Zhang YQ, Chen GZ et al. Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family 'Oxalobacteraceae' isolated from China. Int J Syst Evol Microbiol 2005;55:1149–1153 [CrossRef][PubMed]
    [Google Scholar]
  20. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994; pp.607–655
    [Google Scholar]
  21. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977;100:221–230 [CrossRef][PubMed]
    [Google Scholar]
  22. Groth I, Schumann P, Weiss N, Martin K, Rainey FA. Agrococcus jenensis gen. nov., sp. nov., a new genus of actinomycetes with diaminobutyric acid in the cell wall. Int J Syst Bacteriol 1996;46:234–239 [CrossRef][PubMed]
    [Google Scholar]
  23. Minnikin DE, Collins MD, Goodfellow M. Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. J Appl Bacteriol 1979;47:87–95 [CrossRef]
    [Google Scholar]
  24. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984;2:233–241 [CrossRef]
    [Google Scholar]
  25. Busse J, Auling G. Polyamine pattern as a chemotaxonomic marker within the Proteobacteria. Syst Appl Microbiol 1988;11:1–8 [CrossRef]
    [Google Scholar]
  26. Busse H-J, Bunka S, Hensel A, Lubitz W. Discrimination of members of the family Pasteurellaceae based on polyamine patterns. Int J Syst Bacteriol 1997;47:698–708 [CrossRef]
    [Google Scholar]
  27. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newwark, DE: MIDI Inc; 1990
    [Google Scholar]
  28. Marmur J. A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 1961;3:208–218 [CrossRef]
    [Google Scholar]
  29. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989;39:159–167 [CrossRef]
    [Google Scholar]
  30. Tamaoka J, Komagata K. Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 1984;25:125–128 [CrossRef]
    [Google Scholar]
  31. Li WJ, Xu P, Schumann P, Zhang YQ, Pukall R et al. Georgenia ruanii sp. nov., a novel actinobacterium isolated from forest soil in Yunnan (China), and emended description of the genus Georgenia. Int J Syst Evol Microbiol 2007;57:1424–1428 [CrossRef][PubMed]
    [Google Scholar]
  32. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67:1613–1618 [CrossRef][PubMed]
    [Google Scholar]
  33. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425 [CrossRef][PubMed]
    [Google Scholar]
  34. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  35. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971;20:406–416 [CrossRef]
    [Google Scholar]
  36. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for Bigger Datasets. Mol Biol Evol 2016;33:1870–1874 [CrossRef][PubMed]
    [Google Scholar]
  37. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980;16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  38. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39:783–791 [CrossRef][PubMed]
    [Google Scholar]
  39. Ezaki T, Hashimoto Y, Yabuuchi E. Fluorometric deoxyribonucleic acid–deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 1989;39:224–229 [CrossRef]
    [Google Scholar]
  40. Christensen H, Angen O, Mutters R, Olsen JE, Bisgaard M. DNA–DNA hybridization determined in micro-wells using covalent attachment of DNA. Int J Syst Evol Microbiol 2000;50:1095–1102 [CrossRef][PubMed]
    [Google Scholar]
  41. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler OK et al. International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacterio 1987;l37:463–464
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002879
Loading
/content/journal/ijsem/10.1099/ijsem.0.002879
Loading

Data & Media loading...

Supplements

Supplementary File 2

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error