1887

Abstract

A gamma radiation-resistant, Gram-stain-negative, rod-shaped bacterial strain, designated SJW1-2, was isolated from freshwater samples collected from the Seomjin River, Republic of Korea. The 16S rRNA gene sequence analyses showed that strain SJW1-2 was most closely related to Deinococcus metalli 1PNM-19 (94.3 % sequence similarity) and formed a robust phylogenetic clade with other species of the genus Deinococcus . The optimum growth pH and temperature for the isolate were pH 7.0–7.5 and 25 °C, respectively. Strain SJW1-2 exhibited high resistance to gamma radiation. The predominant respiratory quinone was MK-8. The polar lipid profile consisted of different unidentified glycolipids, two unidentified lipids, two unidentified phospholipids and an unidentified phosphoglycolipid. The major peptidoglycan amino acids were alanine, d-glutamic acid, glycine and l-ornithine. The predominant fatty acids (>10 %) were summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c) (25.2 %) and C16 : 0 (21.2 %), and the DNA G+C content was 69.5 mol%. On the basis of phenotypic, genotypic and phylogenetic analyses, strain SJW1-2 (=KACC 19332=NBRC 112908) represents a novel species of the genus Deinococcus , for which the name Deinococcus koreensis sp. nov. is proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002872
2018-06-22
2020-01-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/8/2545.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002872&mimeType=html&fmt=ahah

References

  1. Brooks BW, Murray RGE. Nomenclature for "Micrococcus radiodurans" and other radiation-resistant cocci: Deinococcaceae fam. nov. and Deinococcus gen. nov., including five species. Int J Syst Bacteriol 1981;31:353–360 [CrossRef]
    [Google Scholar]
  2. LSPN 2017; Genus Deinococcus. List of prokaryotic names with standing in nomenclaturewww.bacterio.net/deinococcus.html [accessed 31 October 2017]
  3. Rainey FA, Ray K, Ferreira M, Gatz BZ, Nobre MF et al. Extensive diversity of ionizing-radiation-resistant bacteria recovered from Sonoran Desert soil and description of nine new species of the genus Deinococcus obtained from a single soil sample. Appl Environ Microbiol 2005;71:5225–5235 [CrossRef][PubMed]
    [Google Scholar]
  4. Yoo SH, Weon HY, Kim SJ, Kim YS, Kim BY et al. Deinococcus aerolatus sp. nov. and Deinococcus aerophilus sp. nov., isolated from air samples. Int J Syst Evol Microbiol 2010;60:1191–1195 [CrossRef][PubMed]
    [Google Scholar]
  5. Im WT, Jung HM, Ten LN, Kim MK, Bora N et al. Deinococcus aquaticus sp. nov., isolated from fresh water, and Deinococcus caeni sp. nov., isolated from activated sludge. Int J Syst Evol Microbiol 2008;58:2348–2353 [CrossRef][PubMed]
    [Google Scholar]
  6. Ferreira AC, Nobre MF, Rainey FA, Silva MT, Wait R et al. Deinococcus geothermalis sp. nov. and Deinococcus murrayi sp. nov., two extremely radiation-resistant and slightly thermophilic species from hot springs. Int J Syst Bacteriol 1997;47:939–947 [CrossRef][PubMed]
    [Google Scholar]
  7. Makk J, Tóth EM, Anda D, Pál S, Schumann P et al. Deinococcus budaensis sp. nov., a mesophilic species isolated from a biofilm sample of a hydrothermal spring cave. Int J Syst Evol Microbiol 2016;66:5345–5351 [CrossRef][PubMed]
    [Google Scholar]
  8. Battista JR. Against all odds: the survival strategies of Deinococcus radiodurans. Annu Rev Microbiol 1997;51:203–224 [CrossRef][PubMed]
    [Google Scholar]
  9. Cox MM, Battista JR. Deinococcus radiodurans – the consummate survivor. Nat Rev Microbiol 2005;3:882–892 [CrossRef][PubMed]
    [Google Scholar]
  10. Cho JC, Giovannoni SJ. Parvularcula bermudensis gen. nov., sp. nov., a marine bacterium that forms a deep branch in the α-Proteobacteria. Int J Syst Evol Microbiol 2003;53:1031–1036 [CrossRef][PubMed]
    [Google Scholar]
  11. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67:1613–1617 [CrossRef][PubMed]
    [Google Scholar]
  12. Pruesse E, Peplies J, Glöckner FO. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 2012;28:1823–1829 [CrossRef][PubMed]
    [Google Scholar]
  13. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33:1870–1874 [CrossRef][PubMed]
    [Google Scholar]
  14. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425 [CrossRef][PubMed]
    [Google Scholar]
  15. Jukes TH, Cantor CR. Evolution of protein molecules. In Munro HN. (editor) Mammalian Protein Metabolism New York: Academic Press; 1969; pp.21–132
    [Google Scholar]
  16. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971;20:406–416 [CrossRef]
    [Google Scholar]
  17. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  18. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39:783–791 [CrossRef][PubMed]
    [Google Scholar]
  19. Smibert RM, Krieg NR. Phenotypic characteristics. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994; pp.607–654
    [Google Scholar]
  20. Tindall BJ, Sikorski J, Smibert RM, Kreig NR. Phenotypic characterization and the principles of comparative systematics. In Reddy CA, Beveridge TJ, Breznak JA, Marzluf G, Schmidt TM et al. (editors) Methods for General and Molecular Microbiology, 3rd ed. Washington, DC: ASM Press; 2007; pp.330–393
    [Google Scholar]
  21. Im S, Song D, Joe M, Kim D, Park DH et al. Comparative survival analysis of 12 histidine kinase mutants of Deinococcus radiodurans after exposure to DNA-damaging agents. Bioprocess Biosyst Eng 2013;36:781–789 [CrossRef][PubMed]
    [Google Scholar]
  22. Zhang YQ, Sun CH, Li WJ, Yu LY, Zhou JQ et al. Deinococcus yunweiensis sp. nov., a gamma- and UV-radiation-resistant bacterium from China. Int J Syst Evol Microbiol 2007;57:370–375 [CrossRef][PubMed]
    [Google Scholar]
  23. Feng GD, Wang YH, Li YX, Zhu HH. Deinococcus metalli sp. nov., isolated from an abandoned lead-zinc mine. Int J Syst Evol Microbiol 2015;65:3457–3461 [CrossRef][PubMed]
    [Google Scholar]
  24. Srinivasan S, Lee JJ, Lim SY, Joe MH, Im SH et al. Deinococcus radioresistens sp. nov., a UV and gamma radiation-resistant bacterium isolated from mountain soil. Antonie van Leeuwenhoek 2015;107:539–545 [CrossRef][PubMed]
    [Google Scholar]
  25. Schleifer KH, Kandler O. Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 1972;36:407–477[PubMed]
    [Google Scholar]
  26. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984;2:233–241 [CrossRef]
    [Google Scholar]
  27. Collins MD. Analysis of isoprenoid quinones. Methods Microbiol 1985;18:329–363
    [Google Scholar]
  28. Komagata K, Suzuki K. Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 1987;19:161–207
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002872
Loading
/content/journal/ijsem/10.1099/ijsem.0.002872
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error