1887

Abstract

A Gram-stain-positive, aerobic actinomycete, designated strain BMP B8152, was isolated from the rhizosphere of Glycyrrhiza inflata collected ashore, in Kashi, Xinjiang province, northwest PR China. A polyphasic approach was used to establish the taxonomic position of this strain. BMP B8152 was observed to form non-fragmented substrate mycelium, and relatively scanty aerial mycelium with rod-shaped spores. Cell-wall hydrolysates contained meso-diaminopimelic acid, galactose, arabinose, glucose and rhamnose (trace). Mycolic acids were not detected. The diagnostic phospholipids were identified as diphosphatidylglycerol, phosphatidylethanolamine, hydroxyphosphatidylethanolamine, ninhydrin-positive phosphoglycolipid and phosphatidylinositol. The predominant menaquinone and fatty acid were MK-9(H4) and iso-branched hexadecanoate (iso-C16 : 0), respectively. The phylogenetic analyses based on the 16S rRNA gene sequences indicated that BMP B8152 formed a distinct monophyletic clade clustered with Actinophytocola timorensis ID05-A0653 (98.8 % 16S rRNA gene sequence similarity), Actinophytocola oryzae GMKU 367 (98.6 %), Actinophytocola corallina ID06-A0464 (98.2 %) and Actinophytocola burenkhanensis MN08-A0203 (97.5 %). In addition, DNA–DNA hybridization values between BMP B8152 and A. timorensis ID05-A0653(44.2±3.6 %) and A. oryzae GMKU 367(36.7±2.3 %) were well below the 70 % limit for species identification. The combined phenotypic and genotypic data indicate that the isolate represents a novel species of the genus Actinophytocola , for which the name Actinophytocola glycyrrhizae sp. nov., is proposed, with the type strain BMP B8152 (=KCTC 49002=CGMCC 4.7433).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002864
2018-06-25
2020-01-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/8/2504.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002864&mimeType=html&fmt=ahah

References

  1. Embley MT, Smida J, Stackebrandt E. The phylogeny of mycolate-less wall chemotype IV actinomycetes and Description of Pseudonocardiaceae fam. nov. Syst Appl Microbiol 1988;11:44–52 [CrossRef]
    [Google Scholar]
  2. Labeda DP, Goodfellow M, Chun J, Zhi XY, Li WJ. Reassessment of the systematics of the suborder Pseudonocardineae: transfer of the genera within the family Actinosynnemataceae Labeda and Kroppenstedt 2000 emend. Zhi et al. 2009 into an emended family Pseudonocardiaceae Embley et al. 1989 emend. Zhi et al. 2009. Int J Syst Evol Microbiol 2011;61:1259–1264 [CrossRef][PubMed]
    [Google Scholar]
  3. Indananda C, Matsumoto A, Inahashi Y, Takahashi Y, Duangmal K et al. Actinophytocola oryzae gen. nov., sp. nov., isolated from the roots of Thai glutinous rice plants, a new member of the family Pseudonocardiaceae. Int J Syst Evol Microbiol 2010;60:1141–1146 [CrossRef][PubMed]
    [Google Scholar]
  4. Sun HM, Zhang T, Yu LY, Lu XX, Mou XZ et al. Actinophytocola gilvus sp. nov., isolated from desert soil crusts, and emended description of the genus Actinophytocola Indananda et al. 2010. Int J Syst Evol Microbiol 2014;64:3120–3125 [CrossRef][PubMed]
    [Google Scholar]
  5. Ara I, Tsetseg B, Daram D, Suto M, Ando K. Actinophytocola burenkhanensis sp. nov., isolated from Mongolian soil. Int J Syst Evol Microbiol 2011;61:1033–1038 [CrossRef][PubMed]
    [Google Scholar]
  6. Guo X, Qiu D, Ruan J, Huang Y. Actinophytocola xinjiangensis sp. nov., isolated from virgin forest soil. Int J Syst Evol Microbiol 2011;61:2928–2932 [CrossRef][PubMed]
    [Google Scholar]
  7. Zhang DF, Jiang Z, Zhang XM, Yang LL, Tian XP et al. Actinophytocola sediminis sp. nov., an actinomycete isolated from a marine sediment. Int J Syst Evol Microbiol 2014;64:2834–2840 [CrossRef][PubMed]
    [Google Scholar]
  8. Bouznada K, Bouras N, Schumann P, Spröer C, Sabaou N et al. Actinophytocola algeriensis sp. nov., an actinobacterium isolated from Saharan soil. Int J Syst Evol Microbiol 2016;66:2760–2765 [CrossRef][PubMed]
    [Google Scholar]
  9. Wang W, Wang B, Meng H, Xing Z, Lai Q et al. Actinophytocola xanthii sp. nov., an actinomycete isolated from rhizosphere soil of the plant Xanthium sibiricum. Int J Syst Evol Microbiol 2017;67:1152–1157 [CrossRef][PubMed]
    [Google Scholar]
  10. Otoguro M, Yamamura H, Tamura T, Irzaldi R, Ratnakomala S et al. Actinophytocola timorensis sp. nov. and Actinophytocola corallina sp. nov., isolated from soil. Int J Syst Evol Microbiol 2011;61:834–838 [CrossRef][PubMed]
    [Google Scholar]
  11. Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol 1966;16:313–340 [CrossRef]
    [Google Scholar]
  12. Li WJ, Xu P, Schumann P, Zhang YQ, Pukall R et al. Georgenia ruanii sp. nov., a novel actinobacterium isolated from forest soil in Yunnan (China), and emended description of the genus Georgenia. Int J Syst Evol Microbiol 2007;57:1424–1428 [CrossRef][PubMed]
    [Google Scholar]
  13. Qin S, Miao Q, Feng W-W, Wang Y, Zhu X et al. Biodiversity and plant growth promoting traits of culturable endophytic actinobacteria associated with Jatropha curcas L. growing in Panxi dry-hot valley soil. Appl Soil Ecol 2015;93:47–55 [CrossRef]
    [Google Scholar]
  14. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997;25:4876–4882 [CrossRef][PubMed]
    [Google Scholar]
  15. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012;62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  16. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33:1870–1874 [CrossRef][PubMed]
    [Google Scholar]
  17. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425 [CrossRef][PubMed]
    [Google Scholar]
  18. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  19. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971;20:406–416 [CrossRef]
    [Google Scholar]
  20. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39:783–791 [CrossRef][PubMed]
    [Google Scholar]
  21. Cao C, Yuan B, Qin S, Jiang J, Tao F et al. Lentzea pudingi sp. nov., isolated from a weathered limestone sample in a karst area. Int J Syst Evol Microbiol 2017;67:4873–4878 [CrossRef][PubMed]
    [Google Scholar]
  22. Kelly KL. Inter-Society Color Council – National Bureau of Standards Color Name Charts Illustrated with Centroid Colors Washington, DC: US Government Printing Office; 1964
    [Google Scholar]
  23. Gerhardt P, Murray RGE, Wood WA, Krieg NR. Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994
    [Google Scholar]
  24. Gregersen T. Rapid method for distinction of Gram-negative from Gram-positive bacteria. Eur J Appl Microbiol Biotechnol 1978;5:123–127 [CrossRef]
    [Google Scholar]
  25. Xu P, Li WJ, Tang SK, Zhang YQ, Chen GZ et al. Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family 'Oxalobacteraceae' isolated from China. Int J Syst Evol Microbiol 2005;55:1149–1153 [CrossRef][PubMed]
    [Google Scholar]
  26. Zhang YQ, Yu LY, Wang D, Liu HY, Sun CH et al. Roseomonas vinacea sp. nov., a Gram-negative coccobacillus isolated from a soil sample. Int J Syst Evol Microbiol 2008;58:2070–2074 [CrossRef][PubMed]
    [Google Scholar]
  27. Williams ST, Goodfellow M, Alderson G, Wellington EM, Sneath PH et al. Numerical classification of Streptomyces and related genera. J Gen Microbiol 1983;129:1743–1813 [CrossRef][PubMed]
    [Google Scholar]
  28. Goodfellow M. Numerical taxonomy of some nocardioform bacteria. J Gen Microbiol 1971;69:33–80 [CrossRef][PubMed]
    [Google Scholar]
  29. Gordon RE, Barnett DA, Handerhan JE, Pang CH-N. Nocardia coeliaca, Nocardia autotrophica, and the nocardin strain. Int J Syst Bacteriol 1974;24:54–63 [CrossRef]
    [Google Scholar]
  30. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994; pp.607–654
    [Google Scholar]
  31. Cao CL, Zhou XQ, Qin S, Tao FX, Jiang JH et al. Lentzea guizhouensis sp. nov., a novel lithophilous actinobacterium isolated from limestone from the Karst area, Guizhou, China. Antonie van Leeuwenhoek 2015;108:1365–1372 [CrossRef][PubMed]
    [Google Scholar]
  32. Staneck JL, Roberts GD. Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 1974;28:226–231[PubMed]
    [Google Scholar]
  33. Hasegawa T, Takizawa M, Tanida S. A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol 1983;29:319–322 [CrossRef]
    [Google Scholar]
  34. Tang SK, Wang Y, Chen Y, Lou K, Cao LL et al. Zhihengliuella alba sp. nov., and emended description of the genus Zhihengliuella. Int J Syst Evol Microbiol 2009;59:2025–2032 [CrossRef][PubMed]
    [Google Scholar]
  35. Tamura T, Nakagaito Y, Nishii T, Hasegawa T, Stackebrandt E et al. A new genus of the order Actinomycetales, Couchioplanes gen. nov., with descriptions of Couchioplanes caeruleus (Horan and Brodsky 1986) comb. nov. and Couchioplanes caeruleus subsp. azureus subsp. nov. Int J Syst Bacteriol 1994;44:193–203 [CrossRef][PubMed]
    [Google Scholar]
  36. Minnikin DE, Collins MD, Goodfellow M. Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. J Appl Bacteriol 1979;47:87–95 [CrossRef]
    [Google Scholar]
  37. Collins MD, Jones D. Lipids in the classification and identification of coryneform bacteria containing peptidoglycans based on 2, 4-diaminobutyric acid. J Appl Bacteriol 1980;48:459–470 [CrossRef]
    [Google Scholar]
  38. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984;2:233–241 [CrossRef]
    [Google Scholar]
  39. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977;100:221–230 [CrossRef][PubMed]
    [Google Scholar]
  40. Groth I, Schumann P, Rainey FA, Martin K, Schuetze B et al. Demetria terragena gen. nov., sp. nov., a new genus of actinomycetes isolated from compost soil. Int J Syst Bacteriol 1997;47:1129–1133 [CrossRef][PubMed]
    [Google Scholar]
  41. Kroppenstedt RM. Separation of bacterial menaquinones by HPLC using reverse phase (RP18) and a silver loaded ion exchanger as stationary phases. J Liq Chromatogr 1982;5:2359–2367 [CrossRef]
    [Google Scholar]
  42. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  43. Lau SK, Curreem SO, Lin CC, Fung AM, Yuen KY et al. Streptococcus hongkongensis sp. nov., isolated from a patient with an infected puncture wound and from a marine flatfish. Int J Syst Evol Microbiol 2013;63:2570–2576 [CrossRef][PubMed]
    [Google Scholar]
  44. Marmur J, Doty P. Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 1962;5:109–118 [CrossRef][PubMed]
    [Google Scholar]
  45. Marmur J. A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 1961;3:208–218 [CrossRef]
    [Google Scholar]
  46. De Ley J, Cattoir H, Reynaerts A. The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 1970;12:133–142 [CrossRef][PubMed]
    [Google Scholar]
  47. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987;37:463–464 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002864
Loading
/content/journal/ijsem/10.1099/ijsem.0.002864
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error