1887

Abstract

A novel actinobacterium, designated strain CFH 30205, was isolated from a soil sample collected from a karst cave in Luoyang, Henan Province, China. The taxonomic position of the strain was investigated by using a polyphasic approach. Cells of the strain were aerobic, Gram-stain-positive, non-motile and rod-shaped. The strain was found to be catalase- and oxidase-positive. Strain CFH 30205 grew optimally at 28 °C, pH 9.0 and in the presence of up to 1.5 % NaCl (w/v). On the basis of 16S rRNA gene sequence analysis, strain CFH 30205 was most closely related to the type strains of Nocardioides terrigena DS-17 (97.6 % sequence similarity) and Nocardioides sediminis MSL-01 (97.0 %). The DNA G+C content was determined to be 69.9 mol%. ll-2,6-Diaminopimelic acid was the diagnostic diamino acid in the cell-wall peptidoglycan. The whole-cell sugars were mannose, xylose and galactose. The major isoprenoid quinone was MK-8 (H4), and the major fatty acids (>10 %) were iso-C16 : 0 and anteiso-C14 : 0. The polar lipids comprised diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol and an unidentified phospholipid. On the basis of phenotypic, genotypic and phylogenetic data, strain CFH 30205 merits representation of a novel species of the genus Nocardioides , for which the name Nocardioides allogilvus sp. nov. is proposed. The type strain is CFH 30205 (=KCTC 49020=CGMCC 4.7457).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002863
2018-06-21
2020-01-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/8/2485.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002863&mimeType=html&fmt=ahah

References

  1. Prauser H. Nocardioides, a new genus of the order Actinomycetales. Int J Syst Bacteriol 1976;26:58–65 [CrossRef]
    [Google Scholar]
  2. Stackebrandt E, Rainey FA, Ward-Rainey NL. Proposal for a new hierarchic classification system, Actinobacteria classis nov. Int J Syst Bacteriol 1997;47:479–491 [CrossRef]
    [Google Scholar]
  3. Singh H, Du J, Trinh H, Won K, Yang JE et al. Nocardioides albidus sp. nov., an actinobacterium isolated from garden soil. Int J Syst Evol Microbiol 2016;66:371–378 [CrossRef][PubMed]
    [Google Scholar]
  4. Qu JH, Li XD, Li HF. Nocardioides taihuensis sp. nov., isolated from fresh water lake sediment. Int J Syst Evol Microbiol 2017;67:3535–3539 [CrossRef][PubMed]
    [Google Scholar]
  5. Lee DW, Lee AH, Lee H, Kim JJ, Khim JS et al. Nocardioides litoris sp. nov., isolated from the Taean seashore. Int J Syst Evol Microbiol 2017;67:2332–2336 [CrossRef][PubMed]
    [Google Scholar]
  6. Wang Y, Xu D, Luo A, Wang G, Zheng S et al. Nocardioides litorisoli sp. nov., isolated from lakeside soil. Int J Syst Evol Microbiol 2017;67:4216–4220 [CrossRef][PubMed]
    [Google Scholar]
  7. Li F, Tuo L, Su ZW, Wei XQ, Zhang XY et al. Nocardioides sonneratiae sp. nov., an endophytic actinomycete isolated from a branch of Sonneratia apetala. Int J Syst Evol Microbiol 2017;67:2592–2597 [CrossRef][PubMed]
    [Google Scholar]
  8. Han MX, Fang BZ, Tian Y, Zhang WQ, Jiao JY et al. Nocardioides cavernae sp. nov., an actinobacterium isolated from a karst cave. Int J Syst Evol Microbiol 2017;67:633–639 [CrossRef][PubMed]
    [Google Scholar]
  9. Wang X, Jiang WK, Cui MD, Yang ZG, Yu X et al. Nocardioides agrisoli sp. nov., isolated from farmland soil. Int J Syst Evol Microbiol 2017;67:3722–3727 [CrossRef][PubMed]
    [Google Scholar]
  10. Khan IU, Hussain F, Habib N, Xiao M, Ahmed I et al. Nocardioides thalensis sp. nov., isolated from a desert. Int J Syst Evol Microbiol 2017;67:2848–2852 [CrossRef][PubMed]
    [Google Scholar]
  11. Lu L, Cao M, Wang D, Yuan K, Zhuang W et al. Nocardioides immobilis sp. nov., isolated from iron mine soil. Int J Syst Evol Microbiol 2017;67:5230–5234 [CrossRef][PubMed]
    [Google Scholar]
  12. Xie F, Yang Y, Ma H, Quan S, Yue D et al. Nocardioides phosphati sp. nov., an actinomycete isolated from a phosphate mine. Int J Syst Evol Microbiol 2017;67:1522–1528 [CrossRef][PubMed]
    [Google Scholar]
  13. Liu J, Li F, Gao CH, Han Y, Hao H et al. Nocardioides kandeliae sp. nov., an endophytic actinomycete isolated from leaves of Kandelia candel. Int J Syst Evol Microbiol 2017;67:3888–3893 [CrossRef][PubMed]
    [Google Scholar]
  14. Dastager SG, Lee JC, Ju YJ, Park DJ, Kim CJ. Nocardioides sediminis sp. nov., isolated from a sediment sample. Int J Syst Evol Microbiol 2009;59:280–284 [CrossRef][PubMed]
    [Google Scholar]
  15. Lee DW, Lee SY, Yoon JH, Lee SD. Nocardioides ultimimeridianus sp. nov. and Nocardioides maradonensis sp. nov., isolated from rhizosphere soil. Int J Syst Evol Microbiol 2011;61:1933–1937 [CrossRef][PubMed]
    [Google Scholar]
  16. Wang L, Li J, Zhang G. Nocardioides rotundus sp. nov., isolated from deep seawater. Int J Syst Evol Microbiol 2016;66:1932–1936 [CrossRef][PubMed]
    [Google Scholar]
  17. Chou JH, Cho NT, Arun AB, Young CC, Chen WM. Nocardioides fonticola sp. nov., a novel actinomycete isolated from spring water. Int J Syst Evol Microbiol 2008;58:1864–1868 [CrossRef][PubMed]
    [Google Scholar]
  18. Xu H, Zhang S, Cheng J, Asem MD, Zhang MY et al. Nocardioides ginkgobilobae sp. nov., an endophytic actinobacterium isolated from the root of the living fossil Ginkgo biloba L. Int J Syst Evol Microbiol 2016;66:2013–2018 [CrossRef][PubMed]
    [Google Scholar]
  19. Song GC, Yasir M, Bibi F, Chung EJ, Jeon CO et al. Nocardioides caricicola sp. nov., an endophytic bacterium isolated from a halophyte, Carex scabrifolia Steud. Int J Syst Evol Microbiol 2011;61:105–109 [CrossRef][PubMed]
    [Google Scholar]
  20. Liu Q, Liu HC, Zhang JL, Zhou YG, Xin YH. Nocardioides glacieisoli sp. nov., isolated from a glacier. Int J Syst Evol Microbiol 2015;65:4845–4849 [CrossRef][PubMed]
    [Google Scholar]
  21. Lin SY, Wen CZ, Hameed A, Liu YC, Hsu YH et al. Nocardioides echinoideorum sp. nov., isolated from sea urchins (Tripneustes gratilla). Int J Syst Evol Microbiol 2015;65:1953–1958 [CrossRef][PubMed]
    [Google Scholar]
  22. Lee SD, Lee DW. Nocardioides rubroscoriae sp. nov., isolated from volcanic ash. Antonie van Leeuwenhoek 2014;105:1017–1023 [CrossRef][PubMed]
    [Google Scholar]
  23. Alias-Villegas C, Jurado V, Laiz L, Miller AZ, Saiz-Jimenez C. Nocardioides albertanoniae sp. nov., isolated from Roman catacombs. Int J Syst Evol Microbiol 2013;63:1280–1284 [CrossRef][PubMed]
    [Google Scholar]
  24. Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol 1966;16:313–340 [CrossRef]
    [Google Scholar]
  25. Ming H, Yin YR, Li S, Nie GX, Yu TT et al. Thermus caliditerrae sp. nov., a novel thermophilic species isolated from a geothermal area. Int J Syst Evol Microbiol 2014;64:650–656 [CrossRef][PubMed]
    [Google Scholar]
  26. Waksman SA. The Actinomycetes. A Summary of Current Knowledge New York: Ronald Press; 1967
    [Google Scholar]
  27. Atlas RM. In Parks LC. (editor) Handbook of Microbiological Media, 4th ed. Boca Raton, FL: CRC Press; 2010; pp.719
    [Google Scholar]
  28. Xu P, Li WJ, Tang SK, Zhang YQ, Chen GZ et al. Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family 'Oxalobacteraceae' isolated from China. Int J Syst Evol Microbiol 2005;55:1149–1153 [CrossRef][PubMed]
    [Google Scholar]
  29. Gordon RE, Barnett DA, Handerhan JE, Pang CHN. Nocardia coeliaca, Nocardia autotrophica, and the nocardin strain. Int J Syst Bacteriol 1974;24:54–63 [CrossRef]
    [Google Scholar]
  30. Williams ST, Goodfellow M, Alderson G. Genus Streptomyces Waksman and Henrici 1943, 339AL. In Williams ST, Sharpe ME, Holt JG. (editors) Bergey’s Manual of Systematic Bacteriologyvol. 4 Baltimore: Williams & Willkins; 1989; pp.2453–2492
    [Google Scholar]
  31. Li WJ, Xu P, Schumann P, Zhang YQ, Pukall R et al. Georgenia ruanii sp. nov., a novel actinobacterium isolated from forest soil in Yunnan (China), and emended description of the genus Georgenia. Int J Syst Evol Microbiol 2007;57:1424–1428 [CrossRef][PubMed]
    [Google Scholar]
  32. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67:1613–1617 [CrossRef][PubMed]
    [Google Scholar]
  33. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990;215:403–410 [CrossRef][PubMed]
    [Google Scholar]
  34. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997;25:4876–4882 [CrossRef][PubMed]
    [Google Scholar]
  35. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33:1870–1874 [CrossRef][PubMed]
    [Google Scholar]
  36. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425 [CrossRef][PubMed]
    [Google Scholar]
  37. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Biol 1971;20:406–416 [CrossRef]
    [Google Scholar]
  38. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  39. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980;16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  40. Kimura M. The Neutral Theory of Molecular Evolution Britain: Cambridge University Press; 1985
    [Google Scholar]
  41. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39:783–791 [CrossRef][PubMed]
    [Google Scholar]
  42. Harrison P. SPADES – a process algebra for discrete event simulation. J Logic Comput 2000;10:3–42 [CrossRef]
    [Google Scholar]
  43. Hyatt D, Chen GL, Locascio PF, Land ML, Larimer FW et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 2010;11:119 [CrossRef][PubMed]
    [Google Scholar]
  44. Wu M, Scott AJ. Phylogenomic analysis of bacterial and archaeal sequences with AMPHORA2. Bioinformatics 2012;28:1033–1034 [CrossRef][PubMed]
    [Google Scholar]
  45. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004;32:1792–1797 [CrossRef][PubMed]
    [Google Scholar]
  46. Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 2000;17:540–552 [CrossRef][PubMed]
    [Google Scholar]
  47. Price MN, Dehal PS, Arkin AP. FastTree 2–approximately maximum-likelihood trees for large alignments. PLoS One 2012;5:e9490 [CrossRef][PubMed]
    [Google Scholar]
  48. Tang SK, Wang Y, Chen Y, Lou K, Cao LL et al. Zhihengliuella alba sp. nov., and emended description of the genus Zhihengliuella. Int J Syst Evol Microbiol 2009;59:2025–2032 [CrossRef][PubMed]
    [Google Scholar]
  49. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977;100:221–230 [CrossRef][PubMed]
    [Google Scholar]
  50. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984;2:233–241 [CrossRef]
    [Google Scholar]
  51. Kroppenstedt RM. Separation of bacterial menaquinones by HPLC using reverse phase (RP18) and a silver loaded ion exchanger as stationary phases. J Liq Chromatogr 1982;5:2359–2367 [CrossRef]
    [Google Scholar]
  52. Tamaoka J, Katayama-Fujimura Y, Kuraishi H. Analysis of bacterial menaquinone mixtures by high performance liquid chromatography. J Appl Bacteriol 1983;54:31–36 [CrossRef]
    [Google Scholar]
  53. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark: Microbial ID, Inc; 1990
    [Google Scholar]
  54. Collins MD, Jones D. Lipids in the classification and identification of coryneform bacteria containing peptidoglycans based on 2, 4-diaminobutyric acid. J Appl Bacteriol 1980;48:459–470 [CrossRef]
    [Google Scholar]
  55. Minnikin DE, Collins MD, Goodfellow M. Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. J Appl Bacteriol 1979;47:87–95 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002863
Loading
/content/journal/ijsem/10.1099/ijsem.0.002863
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error