Ahniella affigens gen. nov., sp. nov., a gammaproteobacterium isolated from sandy soil near a stream Free

Abstract

A bacterial strain, designated D13, was isolated from sandy soil near a stream in Sinan-gun, Republic of Korea. Cells were Gram-stain-negative, aerobic, non-motile and flexible rod-shaped. Growth occurred at 15–35 °C (optimum 30 °C) and pH 6.5–8.0 (pH 7.0). NaCl was not obligatory for growth but could be tolerated at up to 0.5 % (w/v) NaCl. The DNA G+C content of the genomic DNA of strain D13 was 57.7 mol% and a phylogenetic analysis of the 16S rRNA gene sequence revealed that strain D13 formed a distinct evolutionary lineage within the family Rhodanobacteraceae of the order Lysobacterales . Strain D13 showed highest 16S rRNA sequence similarity to Lysobacter hankyongensis KTCe-2 (92.7 %), followed by Luteimonas cucumeris Y4 (92.7 %), Dyella japonica XD53 (92.6 %) and Aquimonas voraii GPTSA 20 (92.5 %). The major cellular fatty acids (>10 % of the total) were iso-C16 : 0, iso-C15 : 0 and summed feature 9 (iso-C17 : 1 ω9с and/or C16 : 0 10-methyl). The respiratory quinone was ubiquinone-8 and the major polar lipids of the isolate consisted of phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol and phosphatidylmonomethylethanolamine. Based on polyphasic analysis, strain D13 could be differentiated from other genera in the family Rhodanobacteraceae , which suggests that strain D13 represents a novel species of a new genus in the family Rhodanobacteraceae , for which the name Ahniella affigens gen. nov., sp. nov. is proposed. The type strain is D13 (=KACC 19270=JCM 31634).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002859
2018-06-20
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/8/2478.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002859&mimeType=html&fmt=ahah

References

  1. Christensen P, Cook FD. Lysobacter, a new genus of nonfruiting, gliding bacteria with a high base ratio. Int J Syst Bacteriol 1978; 28:367–393 [View Article]
    [Google Scholar]
  2. Naushad S, Adeolu M, Wong S, Sohail M, Schellhorn HE et al. A phylogenomic and molecular marker based taxonomic framework for the order Xanthomonadales: proposal to transfer the families Algiphilaceae and Solimonadaceae to the order Nevskiales ord. nov. and to create a new family within the order Xanthomonadales, the family Rhodanobacteraceae fam. nov., containing the genus Rhodanobacter and its closest relatives. Antonie van Leeuwenhoek 2015; 107:467–485 [View Article][PubMed]
    [Google Scholar]
  3. Friedrich MM, Lipski A. Alkanibacter difficilis gen. nov., sp. nov. and Singularimonas variicoloris gen. nov., sp. nov., hexane-degrading bacteria isolated from a hexane-treated biofilter. Int J Syst Evol Microbiol 2008; 58:2324–2329 [View Article][PubMed]
    [Google Scholar]
  4. Nogi Y, Yoshizumi M, Hamana K, Miyazaki M, Horikoshi K. Povalibacter uvarum gen. nov., sp. nov., a polyvinyl-alcohol-degrading bacterium isolated from grapes. Int J Syst Evol Microbiol 2014; 64:2712–2717 [View Article][PubMed]
    [Google Scholar]
  5. Fahrbach M, Kuever J, Remesch M, Huber BE, Kämpfer P et al. Steroidobacter denitrificans gen. nov., sp. nov., a steroidal hormone-degrading gammaproteobacterium. Int J Syst Evol Microbiol 2008; 58:2215–2223 [View Article][PubMed]
    [Google Scholar]
  6. Nalin R, Simonet P, Vogel TM, Normand P. Rhodanobacter lindaniclasticus gen. nov., sp. nov., a lindane-degrading bacterium. Int J Syst Bacteriol 1999; 49:19–23 [View Article][PubMed]
    [Google Scholar]
  7. Gomori G. Preparation of buffers for use in enzyme studies. Methods Enzymol 1955; 1:138–146
    [Google Scholar]
  8. Barrow GI, Feltham RK. Cowan and Steel's Manual for the Identification of Medical Bacteria, 3rd ed. London: Cambridge University Press; 1993
    [Google Scholar]
  9. Lane DJ. 16S/23S rRNA sequencing. In Stackebrandt E, Goodfellow M. (editors) Nucleic Acid Techniques in Bacterial Systematics New York: John Wiley & Sons; 1991 pp. 115–175
    [Google Scholar]
  10. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990; 215:403–410 [View Article][PubMed]
    [Google Scholar]
  11. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed]
    [Google Scholar]
  12. Pruesse E, Peplies J, Glöckner FO. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 2012; 28:1823–1829 [View Article][PubMed]
    [Google Scholar]
  13. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30:2725–2729 [View Article][PubMed]
    [Google Scholar]
  14. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article][PubMed]
    [Google Scholar]
  15. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed]
    [Google Scholar]
  16. Tamura K, Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 1993; 10:512–526 [View Article][PubMed]
    [Google Scholar]
  17. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994; 22:4673–4680 [View Article][PubMed]
    [Google Scholar]
  18. McCammon SA, Innes BH, Bowman JP, Franzmann PD, Dobson SJ et al. Flavobacterium hibernum sp. nov., a lactose-utilizing bacterium from a freshwater Antarctic lake. Int J Syst Bacteriol 1998; 48:1405–1412 [View Article][PubMed]
    [Google Scholar]
  19. Bernardet JF, Kerouault B. Phenotypic and genomic studies of "Cytophaga psychrophila" isolated from diseased rainbow trout (Oncorhynchus mykiss) in France. Appl Environ Microbiol 1989; 55:1796–1800[PubMed]
    [Google Scholar]
  20. Smith NR, Gordon RE, Clark FE. Aerobic Spore-forming Bacteria, USDA Agriculture Monograph no. 16 Washington, DC: Government Printing Office; 1952
    [Google Scholar]
  21. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  22. Komagata K, Suzuki K. Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 1987; 19:161–206
    [Google Scholar]
  23. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989; 39:159–167 [View Article]
    [Google Scholar]
  24. Saddler GS, Bradbury JF. Xanthomonadales ord. nov. Bergey’s Manual® of Systematic BacteriologyBergey’s Manual® of Systematic Bacteriology 200563–122
    [Google Scholar]
  25. Park JH, Kim R, Aslam Z, Jeon CO, Chung YR. Lysobacter capsici sp. nov., with antimicrobial activity, isolated from the rhizosphere of pepper, and emended description of the genus Lysobacter. Int J Syst Evol Microbiol 2008; 58:387–392 [View Article][PubMed]
    [Google Scholar]
  26. Siddiqi MZ, Im WT. Lysobacter hankyongensis sp. nov., isolated from activated sludge and Lysobacter sediminicola sp. nov., isolated from freshwater sediment. Int J Syst Evol Microbiol 2016; 66:212–218 [View Article][PubMed]
    [Google Scholar]
  27. Ngo HT, Won K, Du J, Son HM, Park Y et al. Lysobacter terrae sp. nov. isolated from Aglaia odorata rhizosphere soil. Int J Syst Evol Microbiol 2015; 65:587–592 [View Article][PubMed]
    [Google Scholar]
  28. Jeong SE, Lee HJ, Jeon CO. Lysobacter aestuarii sp. nov., isolated from estuary sediment. Int J Syst Evol Microbiol 2016; 66:1346–1351 [View Article][PubMed]
    [Google Scholar]
  29. Fukuda W, Kimura T, Araki S, Miyoshi Y, Atomi H et al. Lysobacter oligotrophicus sp. nov., isolated from an Antarctic freshwater lake in Antarctica. Int J Syst Evol Microbiol 2013; 63:3313–3318 [View Article][PubMed]
    [Google Scholar]
  30. Finkmann W, Altendorf K, Stackebrandt E, Lipski A. Characterization of N2O-producing Xanthomonas-like isolates from biofilters as Stenotrophomonas nitritireducens sp. nov., Luteimonas mephitis gen. nov., sp. nov. and Pseudoxanthomonas broegbernensis gen. nov., sp. nov. Int J Syst Evol Microbiol 2000; 50 Pt 1:273–282 [View Article][PubMed]
    [Google Scholar]
  31. Lin SY, Hameed A, Shahina M, Liu YC, Hsu YH et al. Description of Luteimonas pelagia sp. nov., isolated from marine sediment, and emended descriptions of Luteimonas aquatica, Luteimonas composti, Luteimonas mephitis, Lysobacter enzymogenes and Lysobacter panaciterrae. Int J Syst Evol Microbiol 2016; 66:645–651 [View Article][PubMed]
    [Google Scholar]
  32. Fan X, Yu T, Li Z, Zhang XH. Luteimonas abyssi sp. nov., isolated from deep-sea sediment. Int J Syst Evol Microbiol 2014; 64:668–674 [View Article][PubMed]
    [Google Scholar]
  33. Wu G, Liu Y, Li Q, Du H, You J et al. Luteimonas huabeiensis sp. nov., isolated from stratum water. Int J Syst Evol Microbiol 2013; 63:3352–3357 [View Article][PubMed]
    [Google Scholar]
  34. Mu Y, Pan Y, Shi W, Liu L, Jiang Z et al. Luteimonas arsenica sp. nov., an arsenic-tolerant bacterium isolated from arsenic-contaminated soil. Int J Syst Evol Microbiol 2016; 66:2291–2296 [View Article][PubMed]
    [Google Scholar]
  35. Romanenko LA, Tanaka N, Svetashev VI, Kurilenko VV, Mikhailov VV. Luteimonas vadosa sp. nov., isolated from seashore sediment. Int J Syst Evol Microbiol 2013; 63:1261–1266 [View Article][PubMed]
    [Google Scholar]
  36. Ngo HT, Yin CS. Luteimonas terrae sp. nov., isolated from rhizosphere soil of Radix ophiopogonis. Int J Syst Evol Microbiol 2016; 66:1920–1925 [View Article][PubMed]
    [Google Scholar]
  37. Hsu YH, Lai WA, Lin SY, Hameed A, Shahina M et al. Chiayiivirga flava gen. nov., sp. nov., a novel bacterium of the family Xanthomonadaceae isolated from an agricultural soil, and emended description of the genus Dokdonella. Int J Syst Evol Microbiol 2013; 63:3293–3300 [View Article][PubMed]
    [Google Scholar]
  38. Lee EM, Jeon CO, Choi I, Chang KS, Kim CJ. Silanimonas lenta gen. nov., sp. nov., a slightly thermophilic and alkaliphilic gammaproteobacterium isolated from a hot spring. Int J Syst Evol Microbiol 2005; 55:385–389 [View Article][PubMed]
    [Google Scholar]
  39. Srinivas TN, Kailash TB, Anil Kumar P. Silanimonas mangrovi sp. nov., a member of the family Xanthomonadaceae isolated from mangrove sediment, and emended description of the genus Silanimonas. Int J Syst Evol Microbiol 2013; 63:274–279 [View Article][PubMed]
    [Google Scholar]
  40. Anandham R, Kwon SW, Indira Gandhi P, Kim SJ, Weon HY et al. Dyella thiooxydans sp. nov., a facultatively chemolithotrophic, thiosulfate-oxidizing bacterium isolated from rhizosphere soil of sunflower (Helianthus annuus L.). Int J Syst Evol Microbiol 2011; 61:392–398 [View Article][PubMed]
    [Google Scholar]
  41. Johansen JE, Binnerup SJ, Kroer N, Mølbak L. Luteibacter rhizovicinus gen. nov., sp. nov., a yellow-pigmented gammaproteobacterium isolated from the rhizosphere of barley (Hordeum vulgare L.). Int J Syst Evol Microbiol 2005; 55:2285–2291 [View Article][PubMed]
    [Google Scholar]
  42. Kämpfer P, Lodders N, Falsen E. Luteibacter anthropi sp. nov., isolated from human blood, and reclassification of Dyella yeojuensis Kim et al. 2006 as Luteibacter yeojuensis comb. nov. Int J Syst Evol Microbiol 2009; 59:2884–2887 [View Article][PubMed]
    [Google Scholar]
  43. Kim BY, Weon HY, Lee KH, Seok SJ, Kwon SW et al. Dyella yeojuensis sp. nov., isolated from greenhouse soil in Korea. Int J Syst Evol Microbiol 2006; 56:2079–2082 [View Article][PubMed]
    [Google Scholar]
  44. Chen MH, Lv YY, Wang J, Tang L, Qiu LH. Dyella humi sp. nov., isolated from forest soil. Int J Syst Evol Microbiol 2016; 66:4372–4376 [View Article][PubMed]
    [Google Scholar]
  45. Lee DW, Lee SD. Dyella marensis sp. nov., isolated from cliff soil. Int J Syst Evol Microbiol 2009; 59:1397–1400 [View Article][PubMed]
    [Google Scholar]
  46. Weon HY, Anandham R, Kim BY, Hong SB, Jeon YA et al. Dyella soli sp. nov. and Dyella terrae sp. nov., isolated from soil. Int J Syst Evol Microbiol 2009; 59:1685–1690 [View Article][PubMed]
    [Google Scholar]
  47. Son HM, Yang JE, Yi EJ, Park Y, Won KH et al. Dyella kyungheensis sp. nov., isolated from soil of a cornus fruit field. Int J Syst Evol Microbiol 2013; 63:3807–3811 [View Article][PubMed]
    [Google Scholar]
  48. Saha P, Krishnamurthi S, Mayilraj S, Prasad GS, Bora TC et al. Aquimonas voraii gen. nov., sp. nov., a novel gammaproteobacterium isolated from a warm spring of Assam, India. Int J Syst Evol Microbiol 2005; 55:1491–1495 [View Article][PubMed]
    [Google Scholar]
  49. Mergaert J, Cnockaert MC, Swings J. Fulvimonas soli gen. nov., sp. nov., a gamma-proteobacterium isolated from soil after enrichment on acetylated starch plastic. Int J Syst Evol Microbiol 2002; 52:1285–1294 [View Article][PubMed]
    [Google Scholar]
  50. Kämpfer P, Martin E, Lodders N, Langer S, Schumann P et al. Pseudofulvimonas gallinarii gen. nov., sp. nov., a new member of the family Xanthomonadaceae. Int J Syst Evol Microbiol 2010; 60:1427–1431 [View Article][PubMed]
    [Google Scholar]
  51. Ahn JH, Kim SJ, Weon HY, Hong SB, Seok SJ et al. Fulvimonas yonginensis sp. nov., isolated from greenhouse soil, and emended description of the genus Fulvimonas. Int J Syst Evol Microbiol 2014; 64:2758–2762 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002859
Loading
/content/journal/ijsem/10.1099/ijsem.0.002859
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited Most Cited RSS feed