1887

Abstract

The genus Methylobacterium , when first proposed by Patt et al. in 1976, was a monospecific genus created to accommodate a single pink pigmented facultatively methylotrophic bacterium. The genus now has over 50 validly published species, however, the percentage 16S rRNA sequence divergence within Methylobacterium questions whether or not they can still be accommodated within one genus. Additionally, several strains are described as belonging to Methylobacterium , but nodulate legumes and in some cases are unable to utilize methanol as a sole carbon source. This study reviews and discusses the current taxonomic status of Methylobacterium . Based on 16S rRNA gene, multi-locus sequence analysis, genomic and phenotypic data, the 52 Methylobacterium species can no longer be retained in one genus. Consequently, a new genus, Methylorubrum gen. nov., is proposed to accommodate 11 species previously held in Methylobacterium . The reclassified species names are proposed as: Methylorubrum aminovorans comb. nov. (type strain TH-15=NCIMB 13343=DSM 8832), Methylorubrum extorquens comb. nov. (type strain NCIMB 9399=DSM 1337), Methylorubrum podarium comb. nov. (type strain FM4=NCIMB 14856=DSM 15083), Methylorubrum populi comb. nov. (type strain BJ001=NCIMB 13946=ATCC BAA-705), Methylorubrum pseudosasae comb. nov. (type strain BL44=ICMP 17622=NBRC 105205), Methylorubrum rhodesianum comb. nov. (type strain NCIMB 12249=DSM 5687), Methylorubrum rhodinum comb. nov. (type strain NCIMB 9421=DSM 2163), Methylorubrum salsuginis comb. nov. (type strain MR=NCIMB 14847=NCCB 100140), Methylorubrum suomiense comb. nov. (type strain F20=NCIMB 13778=DSM 14458), Methylorubrum thiocyanatum comb. nov. (type strain ALL/SCN-P=NCIMB 13651=DSM 11490) and Methylorubrum zatmanii comb. nov. (type strain NCIMB 12243=DSM 5688). The taxonomic position of several remaining species is also discussed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002856
2018-07-19
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/9/2727.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002856&mimeType=html&fmt=ahah

References

  1. Madhaiyan M, Poonguzhali S, Kwon SW, Sa TM. Methylobacterium phyllosphaerae sp. nov., a pink-pigmented, facultative methylotroph from the phyllosphere of rice. Int J Syst Evol Microbiol 2009; 59:22–27 [View Article][PubMed]
    [Google Scholar]
  2. Kelly DP, McDonald IR, Wood AP. Family Methylobacteriaceae. In Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F et al. (editors) The Prokaryotes, Volume 8, Alphaproteobacteria and Betaproteobacteria Berlin Heidelberg: Springer-Verlag; 2014
    [Google Scholar]
  3. Patt TE, Cole GC, Hanson RS. Methylobacterium, a new genus of facultatively methylotrophic bacteria. Int J Syst Bacteriol 1976; 26:226–229 [View Article]
    [Google Scholar]
  4. Green PN. Methylobacterium. In Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E et al. (editors) The Prokaryotes New York: Springer; 2006 pp. 257–265
    [Google Scholar]
  5. Bassalik L. Über die Verarbeitung der Oxalsäure durch Bacillus extorquens n. sp. Jahrbücher für Wissenschaftliche Botanik 1913; 53:255–302
    [Google Scholar]
  6. Green PN, Bousfield IJ. A taxonomic study of some Gram-negative facultatively methylotrophic bacteria. Microbiology 1982; 128:623–638 [View Article]
    [Google Scholar]
  7. Green PN, Bousfield IJ. Emendation of Methylobacterium Patt, Cole, and Hanson 1976; Methylobacterium rhodinum (Heumann 1962) comb. nov. corrig.; Methylobacterium radiotolerans (Ito and Iizuka 1971) comb. nov. corrig.; and Methylobacterium mesophilicum (Austin and Goodfellow 1979) comb. nov. Int J Syst Bacteriol 1983; 33:875–877 [View Article]
    [Google Scholar]
  8. Hood DW, Dow CS, Green PN. DNA:DNA hybridization studies on the pink-pigmented facultative methylotrophs. Microbiology 1987; 133:709–720 [View Article]
    [Google Scholar]
  9. Urakami T, Komagata K. Protomonas, a new genus of facultatively methylotrophic bacteria. Int J Syst Bacteriol 1984; 34:188–201 [View Article]
    [Google Scholar]
  10. Bousfield IJ, Green PN. Reclassification of bacteria of the genus Protomonas Urakami and Komagata 1984 in the genus Methylobacterium (Patt, Cole, and Hanson) emend. Green and Bousfield 1983. Int J Syst Bacteriol 1985; 35:209 [View Article]
    [Google Scholar]
  11. Stackebrandt E, Frederiksen W, Garrity GM, Grimont PAD, Kämpfer P et al. Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int J Syst Evol Microbiol 2002; 52:1043–1047
    [Google Scholar]
  12. Kanso S, Patel BKC. Microvirga subterranea gen. nov., sp. nov., a moderate thermophile from a deep subsurface Australian thermal aquifer. Int J Syst Evol Microbiol 2003; 53:401–406 [View Article]
    [Google Scholar]
  13. Weon H-Y, Kwon S-W, Son J-A, Jo E-H, Kim S-J et al. Description of Microvirga aerophila sp. nov. and Microvirga aerilata sp. nov., isolated from air, reclassification of Balneimonas flocculans Takeda et al. 2004 as Microvirga flocculans comb. nov. and emended description of the genus Microvirga. Int J Syst Evol Microbiol 2010; 60:2596–2600 [View Article]
    [Google Scholar]
  14. Qu Z, Jiang F, Chang X, Qiu X, Ren L et al. Psychroglaciecola arctica gen. nov., sp. nov., isolated from Arctic glacial foreland soil. Int J Syst Evol Microbiol 2014; 64:1817–1824 [View Article]
    [Google Scholar]
  15. Garrity GM, Bell JA, Lilburn TG. Family IX. Methylobacteriaceae. In Garrity GM, Brenner DJ, Krieg NR, Staley JT. (editors) Bergey's Manual of Systematic Bacteriology New York: Springer - Verlag; 2005 p. 567
    [Google Scholar]
  16. Green PN. Genus I. Methylobacterium Patt, Cole & Hanson 1976 emend. Green and Bousfield 1983. Bergey’s Manual of Systematic Bacteriology, vol 2, Part C: The Alpha-, Beta-, Delta- and Epsilonproteobacteria New York: Springer; 2005 p. 876
    [Google Scholar]
  17. Kato Y, Asahara M, Arai D, Goto K, Yokota A. Reclassification of Methylobacterium chloromethanicum and Methylobacterium dichloromethanicum as later subjective synonyms of Methylobacterium extorquens and of Methylobacterium lusitanum as a later subjective synonym of Methylobacterium rhodesianum. J Gen Appl Microbiol 2005; 51:287–299 [View Article]
    [Google Scholar]
  18. Yarza P, Yilmaz P, Pruesse E, Glöckner FO, Ludwig W et al. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol 2014; 12:635–645 [View Article]
    [Google Scholar]
  19. Tindall BJ, Busse H-J, Ludwig W, Rosselló-Móra R, Kämpfer P. Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol 2010; 60:249–266 [View Article]
    [Google Scholar]
  20. Kato Y, Asahara M, Goto K, Kasai H, Yokota A. Methylobacterium persicinum sp. nov., Methylobacterium komagatae sp. nov., Methylobacterium brachiatum sp. nov., Methylobacterium tardum sp. nov. and Methylobacterium gregans sp. nov., isolated from freshwater. Int J Syst Evol Microbiol 2008; 58:1134–1141 [View Article]
    [Google Scholar]
  21. Tani A, Sahin N, Kimbara K. Methylobacterium oxalidis sp. nov., isolated from leaves of Oxalis corniculata. Int J Syst Evol Microbiol 2012; 62:1647–1652 [View Article]
    [Google Scholar]
  22. Tani A, Sahin N, Kimbara K. Methylobacterium gnaphalii sp. nov., isolated from leaves of Gnaphalium spicatum. Int J Syst Evol Microbiol 2012; 62:2602–2607 [View Article]
    [Google Scholar]
  23. Tani A, Sahin N. Methylobacterium haplocladii sp. nov. and Methylobacterium brachythecii sp. nov., isolated from bryophytes. Int J Syst Evol Microbiol 2013; 63:3287–3292 [View Article]
    [Google Scholar]
  24. Chaudhry V, Baindara P, Pal VK, Chawla N, Patil PB et al. Methylobacterium indicum sp. nov., a facultative methylotrophic bacterium isolated from rice seed. Syst Appl Microbiol 2016; 39:25–32 [View Article]
    [Google Scholar]
  25. Tani A, Sahin N, Matsuyama Y, Enomoto T, Nishimura N et al. High-throughput identification and screening of novel Methylobacterium species using whole-cell MALDI-TOF/MS analysis. PLoS One 2012; 7:e40784 [View Article][PubMed]
    [Google Scholar]
  26. Chistoserdova L, Lidstrom ME. Aerobic methylotrophic prokaryotes. In Rosenberg E, DeLong EF, Thompson F, Lory S, Stackebrandt E et al. (editors) The Prokaryotes Berlin, Heidelberg, German: Springer; 2013 pp. 267–285
    [Google Scholar]
  27. Chistoserdova L. Modularity of methylotrophy, revisited. Environ Microbiol 2011; 13:2603–2622 [View Article]
    [Google Scholar]
  28. Wellner S, Lodders N, Kämpfer P. Methylobacterium cerastii sp. nov., isolated from the leaf surface of Cerastium holosteoides. Int J Syst Evol Microbiol 2012; 62:917–924 [View Article][PubMed]
    [Google Scholar]
  29. Wellner S, Lodders N, Glaeser SP, Kämpfer P. Methylobacterium trifolii sp. nov. and Methylobacterium thuringiense sp. nov., methanol-utilizing, pink-pigmented bacteria isolated from leaf surfaces. Int J Syst Evol Microbiol 2013; 63:2690–2699 [View Article][PubMed]
    [Google Scholar]
  30. Madhaiyan M, Poonguzhali S, Senthilkumar M, Lee J-S, Lee K-C. Methylobacterium gossipiicola sp. nov., a pink-pigmented, facultatively methylotrophic bacterium isolated from the cotton phyllosphere. Int J Syst Evol Microbiol 2012; 62:162–167 [View Article]
    [Google Scholar]
  31. Schauer S, Kämpfer P, Wellner S, Spröer C, Kutschera U. Methylobacterium marchantiae sp. nov., a pink-pigmented, facultatively methylotrophic bacterium isolated from the thallus of a liverwort. Int J Syst Evol Microbiol 2011; 61:870–876 [View Article][PubMed]
    [Google Scholar]
  32. Madhaiyan M, Poonguzhali S. Methylobacterium pseudosasicola sp. nov. and Methylobacterium phyllostachyos sp. nov., isolated from bamboo leaf surfaces. Int J Syst Evol Microbiol 2014; 64:2376–2384 [View Article]
    [Google Scholar]
  33. Beck DA, McTaggart TL, Setboonsarng U, Vorobev A, Goodwin L et al. Multiphyletic origins of methylotrophy in Alphaproteobacteria, exemplified by comparative genomics of Lake Washington isolates. Environ Microbiol 2015; 17:547–554 [View Article][PubMed]
    [Google Scholar]
  34. Wiegel J, Wilke D, Baumgarten J, Opitz R, Schlegel HG. Transfer of the nitrogen-fixing hydrogen bacterium Corynebacterium autotrophicum Baumgarten et al. to Xanthobacter gen. nov. Int J Syst Bacteriol 1978; 28:573–581 [View Article]
    [Google Scholar]
  35. Chistoserdova L. Lanthanides: new life metals?. World J Microbiol Biotechnol 2016; 32:138 [View Article]
    [Google Scholar]
  36. Keltjens JT, Pol A, Reimann J, Op den Camp HJM. PQQ-dependent methanol dehydrogenases: rare-earth elements make a difference. Appl Microbiol Biotechnol 2014; 98:6163–6183 [View Article]
    [Google Scholar]
  37. Skovran E, Palmer AD, Rountree AM, Good NM, Lidstrom ME. XoxF is required for expression of methanol dehydrogenase in Methylobacterium extorquens AM1. J Bacteriol 2011; 193:6032–6038 [View Article][PubMed]
    [Google Scholar]
  38. Vu HN, Subuyuj GA, Vijayakumar S, Good NM, Martinez-Gomez NC et al. Lanthanide-dependent regulation of methanol oxidation systems in Methylobacterium extorquens AM1 and their contribution to methanol growth. J Bacteriol 2016; 198:1250–1259
    [Google Scholar]
  39. Aslam Z, Lee CS, Kim K-H, Im W-T, Ten LN et al. Methylobacterium jeotgali sp. nov., a non-pigmented, facultatively methylotrophic bacterium isolated from jeotgal, a traditional Korean fermented seafood. Int J Syst Evol Microbiol 2007; 57:566–571 [View Article]
    [Google Scholar]
  40. Jourand P, Giraud E, Béna G, Sy A, Willems A et al. Methylobacterium nodulans sp. nov., for a group of aerobic, facultatively methylotrophic, legume root-nodule-forming and nitrogen-fixing bacteria. Int J Syst Evol Microbiol 2004; 54:2269–2273 [View Article][PubMed]
    [Google Scholar]
  41. Sy A, Giraud E, Jourand P, Garcia N, Willems A et al. Methylotrophic Methylobacterium bacteria nodulate and fix nitrogen in symbiosis with legumes. J Bacteriol 2001; 183:214–220 [View Article][PubMed]
    [Google Scholar]
  42. Ardley JK, Parker MA, de Meyer SE, Trengove RD, O'Hara GW et al. Microvirga lupini sp. nov., Microvirga lotononidis sp. nov. and Microvirga zambiensis sp. nov. are alphaproteobacterial root-nodule bacteria that specifically nodulate and fix nitrogen with geographically and taxonomically separate legume hosts. Int J Syst Evol Microbiol 2012; 62:2579–2588 [View Article][PubMed]
    [Google Scholar]
  43. Radl V, Simões-Araújo JL, Leite J, Passos SR, Martins LMV et al. Microvirga vignae sp. nov., a root nodule symbiotic bacterium isolated from cowpea grown in semi-arid Brazil. Int J Syst Evol Microbiol 2014; 64:725–730 [View Article][PubMed]
    [Google Scholar]
  44. Sprent JI, Ardley J, James EK. Biogeography of nodulated legumes and their nitrogen-fixing symbionts. New Phytol 2017; 215:40–56 [View Article]
    [Google Scholar]
  45. Boatwright JS, Wink M, Van Wyk B-E. The generic concept of Lotononis (Crotalarieae, Fabaceae): Reinstatement of the genera Euchlora, Leobordea and Listia and the new genus Ezoloba. Taxon 2011; 60:161–177
    [Google Scholar]
  46. Ardley JK, O’Hara GW, Reeve WG, Yates RJ, Dilworth MJ et al. Root nodule bacteria isolated from South African Lotononis bainesii, L. listii and L. solitudinis are species of Methylobacterium that are unable to utilize methanol. Arch Microbiol 2009; 191:311–318 [View Article]
    [Google Scholar]
  47. Ardley JK, Reeve WG, O'Hara GW, Yates RJ, Dilworth MJ et al. Nodule morphology, symbiotic specificity and association with unusual rhizobia are distinguishing features of the genus Listia within the southern African crotalarioid clade Lotononis s.l. Ann Bot 2013; 112:1–15 [View Article]
    [Google Scholar]
  48. Jaftha JB, Strijdom BW, Steyn PL. Characterization of pigmented methylotrophic bacteria which nodulate Lotononis bainesii. Syst Appl Microbiol 2002; 25:440–449 [View Article][PubMed]
    [Google Scholar]
  49. Yates RJ, Howieson JG, Reeve WG, Nandasena KG, Law IJ et al. Lotononis angolensis forms nitrogen fixing, lupinoid nodules with phylogenetically unique, fast-growing, pink-pigmented bacteria, which do not nodulate L. bainesii or L. listii. Soil Biol Biochem 2007; 39:1680–1688 [View Article]
    [Google Scholar]
  50. Colby J, Zatman LJ. Trimethylamine metabolism in obligate and facultative methylotrophs. Biochem J 1973; 132:101–112 [View Article]
    [Google Scholar]
  51. Yilmaz P, Parfrey LW, Yarza P, Gerken J, Pruesse E et al. The SILVA and “All-species Living Tree Project (LTP)” taxonomic frameworks. Nucleic Acids Res 2014; 42:D643–D648 [View Article]
    [Google Scholar]
  52. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 2013; 41:D590–D596 [View Article]
    [Google Scholar]
  53. Pruesse E, Peplies J, Glöckner FO. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 2012; 28:1823–1829 [View Article]
    [Google Scholar]
  54. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30:2725–2729 [View Article]
    [Google Scholar]
  55. Wu D, Jospin G, Eisen JA. Systematic identification of gene families for use as "markers" for phylogenetic and phylogeny-driven ecological studies of bacteria and archaea and their major subgroups. PLoS One 2013; 8:e77033 [View Article][PubMed]
    [Google Scholar]
  56. Nakao A, Yoshihama M, Kenmochi N. RPG: the Ribosomal Protein Gene database. Nucleic Acids Res 2004; 32:168D–170 [View Article][PubMed]
    [Google Scholar]
  57. Chistoserdova L, Chen SW, Lapidus A, Lidstrom ME. Methylotrophy in Methylobacterium extorquens AM1 from a genomic point of view. J Bacteriol 2003; 185:2980–2987 [View Article][PubMed]
    [Google Scholar]
  58. Stackebrandt E. Phylogenetic relationships vs. phenotypic diversity: how to achieve a phylogenetic classification system of the eubacteria. Can J Microbiol 1988; 34:552–556 [View Article][PubMed]
    [Google Scholar]
  59. McDonald IR, Murrell JC. The methanol dehydrogenase structural gene mxaF and its use as a functional gene probe for methanotrophs and methylotrophs. Appl Environ Microbiol 1997; 63:3218–3224
    [Google Scholar]
  60. Dourado MN, Andreote FD, Dini-Andreote F, Conti R, Araújo JM et al. Analysis of 16S rRNA and mxaF genes revealing insights into Methylobacterium niche-specific plant association. Genet Mol Biol 2012; 35:142–148 [View Article]
    [Google Scholar]
  61. Kist J, Tate RL. Phylogeny of bacterial methylotrophy genes reveals robustness in Methylobacterium mxaF sequences and mxa operon construction. Soil Biol Biochem 2013; 59:49–57 [View Article]
    [Google Scholar]
  62. Varghese NJ, Mukherjee S, Ivanova N, Konstantinidis KT, Mavrommatis K et al. Microbial species delineation using whole genome sequences. Nucleic Acids Res 2015; 43:6761–6771 [View Article]
    [Google Scholar]
  63. Auch AF, von Jan M, Klenk H-P, Göker M. Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2010; 2:117–134 [View Article]
    [Google Scholar]
  64. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article][PubMed]
    [Google Scholar]
  65. Marx CJ, Bringel F, Chistoserdova L, Moulin L, Farhan Ul Haque M et al. Complete genome sequences of six strains of the genus Methylobacterium. J Bacteriol 2012; 194:4746–4748 [View Article][PubMed]
    [Google Scholar]
  66. Urakami T, Araki H, Suzuki K-I, Komagata K. Further studies of the genus Methylobacterium and description of Methylobacterium aminovorans sp. nov. Int J Syst Bacteriol 1993; 43:504–513 [View Article]
    [Google Scholar]
  67. Stiefel P, Zambelli T, Vorholt JA. Isolation of optically targeted single bacteria by application of fluidic force microscopy to aerobic anoxygenic phototrophs from the phyllosphere. Appl Environ Microbiol 2013; 79:4895–4905 [View Article][PubMed]
    [Google Scholar]
  68. Knief C, Frances L, Vorholt JA. Competitiveness of diverse Methylobacterium strains in the phyllosphere of Arabidopsis thaliana and identification of representative models, including M. extorquens PA1. Microb Ecol 2010; 60:440–452 [View Article][PubMed]
    [Google Scholar]
  69. Delmotte N, Knief C, Chaffron S, Innerebner G, Roschitzki B et al. Community proteogenomics reveals insights into the physiology of phyllosphere bacteria. Proc Natl Acad Sci U S A 2009; 106:16428–16433 [View Article]
    [Google Scholar]
  70. Poonguzhali S, Madhaiyan M, Yim WJ, Kim KA, Sa TM. Colonization pattern of plant root and leaf surfaces visualized by use of green-fluorescent-marked strain of Methylobacterium suomiense and its persistence in rhizosphere. Appl Microbiol Biotechnol 2008; 78:1033–1043 [View Article][PubMed]
    [Google Scholar]
  71. Vorholt JA. Microbial life in the phyllosphere. Nat Rev Microbiol 2012; 10:828–840 [View Article]
    [Google Scholar]
  72. Giraud E, Fleischman D. Nitrogen-fixing symbiosis between photosynthetic bacteria and legumes. Photosynth Res 2004; 82:115–130 [View Article]
    [Google Scholar]
  73. Van Aken B, Peres CM, Doty SL, Yoon JM, Schnoor JL. Methylobacterium populi sp. nov., a novel aerobic, pink-pigmented, facultatively methylotrophic, methane-utilizing bacterium isolated from poplar trees (Populus deltoides x nigra DN34). Int J Syst Evol Microbiol 2004; 54:1191–1196 [View Article]
    [Google Scholar]
  74. Van Dien SJ, Marx CJ, O'Brien BN, Lidstrom ME. Genetic characterization of the carotenoid biosynthetic pathway in Methylobacterium extorquens AM1 and isolation of a colorless mutant. Appl Environ Microbiol 2003; 69:7563–7566 [View Article][PubMed]
    [Google Scholar]
  75. Dedysh SN, Dunfield PF, Trotsenko YA. Methane utilization by Methylobacterium species: new evidence but still no proof for an old controversy. Int J Syst Evol Microbiol 2004; 54:1919–1920 [View Article]
    [Google Scholar]
  76. Veyisoglu A, Camas M, Tatar D, Guven K, Sazak A et al. Methylobacterium tarhaniae sp. nov., isolated from arid soil. Int J Syst Evol Microbiol 2013; 63:2823–2828 [View Article]
    [Google Scholar]
  77. Gallego V, García MT, Ventosa A. Methylobacterium hispanicum sp. nov. and Methylobacterium aquaticum sp. nov., isolated from drinking water. Int J Syst Evol Microbiol 2005; 55:281–287 [View Article]
    [Google Scholar]
  78. Kang Y-S, Kim J, Shin H-D, Nam Y-D, Bae J-W et al. Methylobacterium platani sp. nov., isolated from a leaf of the tree Platanus orientalis. Int J Syst Evol Microbiol 2007; 57:2849–2853 [View Article]
    [Google Scholar]
  79. Gallego V, García MT, Ventosa A. Methylobacterium variabile sp. nov., a methylotrophic bacterium isolated from an aquatic environment. Int J Syst Evol Microbiol 2005; 55:1429–1433 [View Article]
    [Google Scholar]
  80. Gallego V, García MT, Ventosa A. Methylobacterium isbiliense sp. nov., isolated from the drinking water system of Sevilla, Spain. Int J Syst Evol Microbiol 2005; 55:2333–2337 [View Article]
    [Google Scholar]
  81. Parker CT, Tindall BJ, Garrity GM. International Code of Nomenclature of Prokaryotes. Int J Syst Evol Microbiol 2015 [View Article][PubMed]
    [Google Scholar]
  82. Anesti V, Vohra J, Goonetilleka S, McDonald IR, Straubler B et al. Molecular detection and isolation of facultatively methylotrophic bacteria, including Methylobacterium podarium sp. nov., from the human foot microflora. Environ Microbiol 2004; 6:820–830 [View Article]
    [Google Scholar]
  83. Madhaiyan M, Poonguzhali S. Methylobacterium pseudosasae sp. nov., a pink-pigmented, facultatively methylotrophic bacterium isolated from the bamboo phyllosphere. Antonie van Leeuwenhoek 2014; 105:367–376 [View Article]
    [Google Scholar]
  84. Green PN, Bousfield IJ, Hood D. Three new Methylobacterium species: M. rhodesianum sp. nov., M. zatmanii sp. nov., and M. fujisawaense sp. nov. Int J Syst Bacteriol 1988; 38:124–127 [View Article]
    [Google Scholar]
  85. Heumann W. Die Methodik der Kreuzung sternbildender Bakterien. Biologisches Zentralblatt 1962; 81:341–354
    [Google Scholar]
  86. Wang X, Sahr F, Xue T, Sun B. Methylobacterium salsuginis sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2007; 57:1699–1703 [View Article]
    [Google Scholar]
  87. Doronina NV, Trotsenko YA, Kuznetsov BB, Tourova TP, Salkinoja-Salonen MS. Methylobacterium suomiense sp. nov. and Methylobacterium lusitanum sp. nov., aerobic, pink-pigmented, facultatively methylotrophic bacteria. Int J Syst Evol Microbiol 2002; 52:773–776
    [Google Scholar]
  88. Wood AP, Kelly DP, McDonald IR, Jordan SL, Morgan TD et al. A novel pink-pigmented facultative methylotroph, Methylobacterium thiocyanatum sp. nov., capable of growth on thiocyanate or cyanate as sole nitrogen sources. Arch Microbiol 1998; 169:148–158 [View Article]
    [Google Scholar]
  89. Gallego V, García MT, Ventosa A. Methylobacterium adhaesivum sp. nov., a methylotrophic bacterium isolated from drinking water. Int J Syst Evol Microbiol 2006; 56:339–342 [View Article]
    [Google Scholar]
  90. Weon H-Y, Kim B-Y, Joa J-H, Son J-A, Song M-H et al. Methylobacterium iners sp. nov. and Methylobacterium aerolatum sp. nov., isolated from air samples in Korea. Int J Syst Evol Microbiol 2008; 58:93–96 [View Article]
    [Google Scholar]
  91. Hoppe T, Peters K, Schmidt F. Methylobacterium bullatum sp. nov., a methylotrophic bacterium isolated from Funaria hygrometrica. Syst Appl Microbiol 2011; 34:482–486 [View Article]
    [Google Scholar]
  92. Lee S-W, Oh H-W, Lee K-H, Ahn T-Y. Methylobacterium dankookense sp. nov., isolated from drinking water. J Microbiol 2009; 47:716–720 [View Article]
    [Google Scholar]
  93. Idris R, Kuffner M, Bodrossy L, Puschenreiter M, Monchy S et al. Characterization of Ni-tolerant methylobacteria associated with the hyperaccumulating plant Thlaspi goesingense and description of Methylobacterium goesingense sp. nov. Syst Appl Microbiol 2006; 29:634–644 [View Article]
    [Google Scholar]
  94. Knief C, Dengler V, Bodelier PLE, Vorholt JA. Characterization of Methylobacterium strains isolated from the phyllosphere and description of Methylobacterium longum sp. nov. Antonie van Leeuwenhoek 2012; 101:169–183 [View Article]
    [Google Scholar]
  95. Austin B, Goodfellow M. Pseudomonas mesophilica, a new species of pink bacteria isolated from leaf surfaces. Int J Syst Bacteriol 1979; 29:373–378 [View Article]
    [Google Scholar]
  96. Madhaiyan M, Kim B-Y, Poonguzhali S, Kwon S-W, Song M-H et al. Methylobacterium oryzae sp. nov., an aerobic, pink-pigmented, facultatively methylotrophic, 1-aminocyclopropane-1-carboxylate deaminase-producing bacterium isolated from rice. Int J Syst Evol Microbiol 2007; 57:326–331 [View Article]
    [Google Scholar]
  97. Ito H, Iizuka H. Taxonomic studies on a radio-resistant Pseudomonas Part XII. Studies on the microorganisms of cereal grain. Agric Biol Chem 1971; 35:1566–1571
    [Google Scholar]
  98. Cao Y-R, Wang Q, Jin R-X, Tang S-K, Jiang Y et al. Methylobacterium soli sp. nov. a methanol-utilizing bacterium isolated from the forest soil. Antonie van Leeuwenhoek 2011; 99:629–634 [View Article]
    [Google Scholar]
  99. McDonald IR, Doronina NV, Trotsenko YA, McAnulla C, Murrell JC. Hyphomicrobium chloromethanicum sp. nov. and Methylobacterium chloromethanicum sp. nov., chloromethane-utilizing bacteria isolated from a polluted environment. Int J Syst Evol Microbiol 2001; 51:119–122 [View Article]
    [Google Scholar]
  100. Doronina NV, Trotsenko YA, Tourova TP, Kuznetsov BB, Leisinger T. Methylopila helvetica sp. nov. and Methylobacterium dichloromethanicum sp. nov.–novel aerobic facultatively methylotrophic bacteria utilizing dichloromethane. Syst Appl Microbiol 2000; 23:210–218 [View Article][PubMed]
    [Google Scholar]
  101. Vuilleumier S, Chistoserdova L, Lee MC, Bringel F, Lajus A et al. Methylobacterium genome sequences: a reference blueprint to investigate microbial metabolism of C1 compounds from natural and industrial sources. PLoS One 2009; 4:e5584 [View Article][PubMed]
    [Google Scholar]
  102. Kwak MJ, Jeong H, Madhaiyan M, Lee Y, Sa TM et al. Genome information of Methylobacterium oryzae, a plant-probiotic methylotroph in the phyllosphere. PLoS One 2014; 9:e106704 [View Article][PubMed]
    [Google Scholar]
  103. Ardley J, Tian R, Howieson J, Yates R, Bräu L et al. Genome sequence of the dark pink pigmented Listia bainesii microsymbiont Methylobacterium sp. WSM2598. Stand Genomic Sci 2014; 9:5 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002856
Loading
/content/journal/ijsem/10.1099/ijsem.0.002856
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error