1887

Abstract

Acidobacteria constitute a globally widespread phylum and mainly inhabit soil environments. Despite their high abundance and activity, only 60 species from seven of the 26 acidobacterial subdivisions (sds; corresponding to class level) are (validly) described. Thus, only a low number of higher taxonomic ranks is currently distinguished within the Acidobacteria . Additionally, the distribution of the known acidobacterial species within the described families of the Acidobacteriaceae (sd1), Bryobacteraceae (sd3), Blastocatellaceae (sd4), Pyrinomonadaceae (sd4), Holophagaceae (sd8) and Acanthopleuribacteraceae (sd8) is extremely biased as most strains are affiliated with the Acidobacteriaceae . Members of this family are characteristic for acidic soils. In contrast, culture-independent analysis of microbial communities worldwide revealed that sd6 Acidobacteria prevail in soils with neutral pH. To improve the existing acidobacterial taxonomy, we here formally describe the first family within sd6 Acidobacteria , the Vicinamibacteraceae. Members of the Vicinamibacteraceae are aerobic, neutrophilic, psychrotolerant to mesophilic chemoheterotrophs. Their cells stain Gram-negative, do not form capsules or spores, and are non-motile. They occur as single cells or in aggregates and divide by binary fission. Growth occurs on sugars or complex proteinaceous compounds. MK-8 is the major quinone. Major fatty acids are iso-C15 : 0, summed feature 3 (C16 : 1ω7c/C16 : 1ω6c), C18 : 1ω7c or ω9c, iso-C17 : 1ω9c, C16 : 0 and iso-C17 : 0. Diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine and phosphatidylglycerol are the major polar lipids. Unidentified glycolipids or unknown phospholipids might also be present. The G+C content of the DNA ranges from 64.7 to 65.9 mol%. Within the Vicinamibacteraceae fam. nov., Vicinamibacter and Luteitalea are the only genera described so far.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002841
2018-05-29
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/7/2331.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002841&mimeType=html&fmt=ahah

References

  1. Schabereiter-Gurtner C, Saiz-Jimenez C, Piñar G, Lubitz W, Rölleke S. Phylogenetic diversity of bacteria associated with Paleolithic paintings and surrounding rock walls in two Spanish caves (Llonín and La Garma). FEMS Microbiol Ecol 2004; 47: 235– 247 [CrossRef] [PubMed]
    [Google Scholar]
  2. Pointing SB, Chan Y, Lacap DC, Lau MC, Jurgens JA et al. Highly specialized microbial diversity in hyper-arid polar desert. Proc Natl Acad Sci USA 2009; 106: 19964– 19969 [CrossRef] [PubMed]
    [Google Scholar]
  3. LaPara TM, Nakatsu CH, Pantea L, Alleman JE. Phylogenetic analysis of bacterial communities in mesophilic and thermophilic bioreactors treating pharmaceutical wastewater. Appl Environ Microbiol 2000; 66: 3951– 3959 [CrossRef] [PubMed]
    [Google Scholar]
  4. Hobel CF, Marteinsson VT, Hreggvidsson GO, Kristjánsson JK. Investigation of the microbial ecology of intertidal hot springs by using diversity analysis of 16S rRNA and chitinase genes. Appl Environ Microbiol 2005; 71: 2771– 2776 [CrossRef] [PubMed]
    [Google Scholar]
  5. Dedysh SN, Pankratov TA, Belova SE, Kulichevskaya IS, Liesack W. Phylogenetic analysis and in situ identification of bacteria community composition in an acidic Sphagnum peat bog. Appl Environ Microbiol 2006; 72: 2110– 2117 [CrossRef] [PubMed]
    [Google Scholar]
  6. Janssen PH. Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. Appl Environ Microbiol 2006; 72: 1719– 1728 [CrossRef] [PubMed]
    [Google Scholar]
  7. Jones RT, Robeson MS, Lauber CL, Hamady M, Knight R et al. A comprehensive survey of soil acidobacterial diversity using pyrosequencing and clone library analyses. ISME J 2009; 3: 442– 453 [CrossRef] [PubMed]
    [Google Scholar]
  8. Lauber CL, Hamady M, Knight R, Fierer N. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl Environ Microbiol 2009; 75: 5111– 5120 [CrossRef] [PubMed]
    [Google Scholar]
  9. Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W et al. SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 2007; 35: 7188– 7196 [CrossRef] [PubMed]
    [Google Scholar]
  10. Barns SM, Cain EC, Sommerville L, Kuske CR. Acidobacteria phylum sequences in uranium-contaminated subsurface sediments greatly expand the known diversity within the phylum. Appl Environ Microbiol 2007; 73: 3113– 3116 [CrossRef] [PubMed]
    [Google Scholar]
  11. Thrash JC, Coates JD. Class I. Acidobacteriia classis nov. In Krieg NR, Staley JT, Brown DR, Hedlund BP, Paster BJ et al. (editors) Bergey’s Manual of Systematic Bacteriology, 2nd ed.vol. 4 New York: Springer; 2011; pp. 727
    [Google Scholar]
  12. Pascual J, Wüst PK, Geppert A, Foesel BU, Huber KJ et al. Novel isolates double the number of chemotrophic species and allow the first description of higher taxa in Acidobacteria subdivision 4. Syst Appl Microbiol 2015; 38: 534– 544 [CrossRef] [PubMed]
    [Google Scholar]
  13. Fukunaga Y, Kurahashi M, Yanagi K, Yokota A, Harayama S. Acanthopleuribacter pedis gen. nov., sp. nov., a marine bacterium isolated from a chiton, and description of Acanthopleuribacteraceae fam. nov., Acanthopleuribacterales ord. nov., Holophagaceae fam. nov., Holophagales ord. nov. and Holophagae classis nov. in the phylum 'Acidobacteria'. Int J Syst Evol Microbiol 2008; 58: 2597– 2601 [CrossRef] [PubMed]
    [Google Scholar]
  14. Thrash JC, Coates JD. Family I. Acidobacteriaceae fam. nov. In Krieg NR, Staley JT, Brown DR, Hedlund BP, Paster BJ et al. (editors) Bergey’s Manual of Systematic Bacteriology, 2nd ed.vol. 4 New York: Springer; 2011; pp. 728
    [Google Scholar]
  15. Dedysh SN, Kulichevskaya IS, Huber KJ, Overmann J. Defining the taxonomic status of described subdivision 3 Acidobacteria: proposal of Bryobacteraceae fam. nov. Int J Syst Evol Microbiol 2017; 67: 498– 501 [CrossRef] [PubMed]
    [Google Scholar]
  16. Wüst PK, Foesel BU, Geppert A, Huber KJ, Luckner M et al. Brevitalea aridisoli, B. deliciosa and Arenimicrobium luteum, three novel species of Acidobacteria subdivision 4 (class Blastocatellia) isolated from savanna soil and description of the novel family Pyrinomonadaceae. Int J Syst Evol Microbiol 2016; 66: 3355– 3366 [CrossRef] [PubMed]
    [Google Scholar]
  17. Tank M, Bryant DA. Chloracidobacterium thermophilum gen. nov., sp. nov.: an anoxygenic microaerophilic chlorophotoheterotrophic acidobacterium. Int J Syst Evol Microbiol 2015; 65: 1426– 1430 [CrossRef] [PubMed]
    [Google Scholar]
  18. Izumi H, Nunoura T, Miyazaki M, Mino S, Toki T et al. Thermotomaculum hydrothermale gen. nov., sp. nov., a novel heterotrophic thermophile within the phylum Acidobacteria from a deep-sea hydrothermal vent chimney in the Southern Okinawa Trough. Extremophiles 2012; 16: 245– 253 [CrossRef] [PubMed]
    [Google Scholar]
  19. Losey NA, Stevenson BS, Busse HJ, Sinninghe Damsté JS, Rijpstra WI et al. Thermoanaerobaculum aquaticum gen. nov., sp. nov., the first cultivated member of Acidobacteria subdivision 23, isolated from a hot spring. Int J Syst Evol Microbiol 2013; 63: 4149– 4157 [CrossRef] [PubMed]
    [Google Scholar]
  20. Huber KJ, Geppert AM, Wanner G, Fösel BU, Wüst PK et al. The first representative of the globally widespread subdivision 6 Acidobacteria,Vicinamibacter silvestris gen. nov., sp. nov., isolated from subtropical savannah soil. Int J Syst Evol Microbiol 2016; 66: 2971– 2979 [CrossRef] [PubMed]
    [Google Scholar]
  21. Vieira S, Luckner M, Wanner G, Overmann J. Luteitalea pratensis gen. nov., sp. nov. a new member of subdivision 6 Acidobacteria isolated from temperate grassland soil. Int J Syst Evol Microbiol 2017; 67: 1408– 1414 [CrossRef] [PubMed]
    [Google Scholar]
  22. Barns SM, Takala SL, Kuske CR. Wide distribution and diversity of members of the bacterial kingdom Acidobacterium in the environment. Appl Environ Microbiol 1999; 65: 1731– 1737 [PubMed]
    [Google Scholar]
  23. Foesel BU, Nägele V, Naether A, Wüst PK, Weinert J et al. Determinants of Acidobacteria activity in German grassland and forest soils. Environ Microbiol 2014; 16: 658– 675 [Crossref]
    [Google Scholar]
  24. George IF, Hartmann M, Liles MR, Agathos SN. Recovery of as-yet-uncultured soil Acidobacteria on dilute solid media. Appl Environ Microbiol 2011; 77: 8184– 8188 [CrossRef] [PubMed]
    [Google Scholar]
  25. Huang S, Vieira S, Bunk B, Riedel T, Spröer C et al. First complete genome sequence of a subdivision 6 Acidobacterium strain. Genome Announc 2016; 4: e00469-16 [CrossRef] [PubMed]
    [Google Scholar]
  26. Ludwig W, Strunk O, Westram R, Richter L, Meier H et al. ARB: a software environment for sequence data. Nucleic Acids Res 2004; 32: 1363– 1371 [CrossRef] [PubMed]
    [Google Scholar]
  27. Yarza P, Yilmaz P, Pruesse E, Glöckner FO, Ludwig W et al. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol 2014; 12: 635– 645 [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002841
Loading
/content/journal/ijsem/10.1099/ijsem.0.002841
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error