1887

Abstract

A bacterial strain designated TAPG2 was isolated from a freshwater creek in Taiwan and characterized using the polyphasic taxonomic approach. Cells of TAPG2 were Gram-stain negative, aerobic, motile, non-spore forming, short rods surrounded by a thick capsules and forming cream to dark-green colonies. Growth occurred at 15–37 °C (optimum, 25–30 °C), at pH 6.5–8 (optimum, pH 7) and with 0–1 % NaCl (optimum, 0.5 %). The major fatty acids (>10 %) of TAPG2 were summed feature 3 (Cω7 and/or Cω6), C and Cω7. The polar lipid profile consisted of phosphatidylethanolamine, phosphatidylglycerol, an uncharacterized aminophospholipid, an uncharacterized phospholipid, an uncharacterized aminolipid and an uncharacterized lipid. The polyamine profile was composed of the major compound putrescine and moderate amounts of spermidine. The only isoprenoid quinone was Q-8. The DNA G+C content was 53.6 mol%. Phylogenetic analyses based on 16S rRNA gene sequences indicated that TAPG2 represented a member of the genus and was most closely related to GR5 and A62-14B with 98.6 and 98.2 % 16S rRNA gene sequence identities, respectively. However, DNA–DNA hybridization values of TAPG2 with type strains of the species with validly published names were lower than 30 %. Differential phenotypic properties, together with the phylogenetic inference, demonstrate that TAPG2 should be classified as representing a novel species of the genus , for which the name sp. nov. is presented. The type strain is TAPG2 (=BCRC 81054=LMG 30056=KCTC 52815).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002838
2018-07-01
2020-11-30
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/7/2340.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002838&mimeType=html&fmt=ahah

References

  1. Brettar I, Christen R, Höfle MG. Rheinheimera baltica gen. nov., sp. nov., a blue-coloured bacterium isolated from the central Baltic Sea. Int J Syst Evol Microbiol 2002;52:1851–1857 [CrossRef][PubMed]
    [Google Scholar]
  2. Merchant MM, Welsh AK, McLean RJ. Rheinheimera texasensis sp. nov., a halointolerant freshwater oligotroph. Int J Syst Evol Microbiol 2007;57:2376–2380 [CrossRef][PubMed]
    [Google Scholar]
  3. Chen WM, Lin CY, Young CC, Sheu SY. Rheinheimera aquatica sp. nov., an antimicrobial activity producing bacterium isolated from freshwater culture pond. J Microbiol Biotechnol 2010;20:1386–1392 [CrossRef][PubMed]
    [Google Scholar]
  4. Li HJ, Zhang XY, Zhang YJ, Zhou MY, Gao ZM et al. Rheinheimera nanhaiensis sp. nov., isolated from marine sediments, and emended description of the genus Rheinheimera Brettar et al. 2002 emend. Merchant et al. 2007. Int J Syst Evol Microbiol 2011;61:1016–1022 [CrossRef][PubMed]
    [Google Scholar]
  5. Liu Y, Jiang JT, Xu CJ, Liu YH, Song XF et al. Rheinheimera longhuensis sp. nov., isolated from a slightly alkaline lake, and emended description of genus Rheinheimera Brettar et al. 2002. Int J Syst Evol Microbiol 2012;62:2927–2933 [CrossRef][PubMed]
    [Google Scholar]
  6. Hayashi K, Busse HJ, Golke J, Anderson J, Wan X et al. Rheinheimera salexigens sp. nov., isolated from a fishing hook, and emended description of the genus Rheinheimera. Int J Syst Evol Microbiol 2018;68:35–41 [CrossRef][PubMed]
    [Google Scholar]
  7. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991;173:697–703 [CrossRef][PubMed]
    [Google Scholar]
  8. Anzai Y, Kudo Y, Oyaizu H. The phylogeny of the genera Chryseomonas, Flavimonas, and Pseudomonas supports synonymy of these three genera. Int J Syst Bacteriol 1997;47:249–251 [CrossRef][PubMed]
    [Google Scholar]
  9. Chen WM, Laevens S, Lee TM, Coenye T, de Vos P et al. Ralstonia taiwanensis sp. nov., isolated from root nodules of Mimosa species and sputum of a cystic fibrosis patient. Int J Syst Evol Microbiol 2001;51:1729–1735 [CrossRef][PubMed]
    [Google Scholar]
  10. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67:1613–1617 [CrossRef][PubMed]
    [Google Scholar]
  11. Cole JR, Wang Q, Cardenas E, Fish J, Chai B et al. The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res 2009;37:D141–D145 [CrossRef][PubMed]
    [Google Scholar]
  12. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007;23:2947–2948 [CrossRef][PubMed]
    [Google Scholar]
  13. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 1999;41:95–98
    [Google Scholar]
  14. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425 [CrossRef][PubMed]
    [Google Scholar]
  15. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  16. Kluge AG, Farris JS. Quantitative phyletics and the evolution of anurans. Syst Zool 1969;18:1–32 [CrossRef]
    [Google Scholar]
  17. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33:1870–1874 [CrossRef][PubMed]
    [Google Scholar]
  18. Kimura M. The Neutral Theory of Molecular Evolution Cambridge: Cambridge University Press; 1983
    [Google Scholar]
  19. Tamura K, Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 1993;10:512–526 [CrossRef][PubMed]
    [Google Scholar]
  20. Nei M, Kumar S. Molecular Evolution and Phylogenetics New York: Oxford University Press; 2000
    [Google Scholar]
  21. Powers EM. Efficacy of the Ryu nonstaining KOH technique for rapidly determining Gram reactions of food-borne and waterborne bacteria and yeasts. Appl Environ Microbiol 1995;61:3756–3758[PubMed]
    [Google Scholar]
  22. Beveridge TJ, Lawrence JR, Murray RGE. Sampling and staining for light microscopy. In Beveridge TJ, Breznak JA, Marzluf GA, Schmidt TM, Snyder LR et al. (editors) Methods for General and Molecular Bacteriology, 3rd ed. Washington, DC: American Society for Microbiology; 2007; pp.19–33
    [Google Scholar]
  23. Breznak JA, Costilow RN. Physicochemical factors in growth. In Beveridge TJ, Breznak JA, Marzluf GA, Schmidt TM, Snyder LR et al. (editors) Methods for General and Molecular Bacteriology, 3rd ed. Washington, DC: American Society for Microbiology; 2007; pp.309–329
    [Google Scholar]
  24. Tindall BJ, Sikorski J, Smibert RA, Krieg NR. Phenotypic characterization and the principles of comparative systematics. In Beveridge TJ, Breznak JA, Marzluf GA, Schmidt TM, Snyder LR et al. (editors) Methods for General and Molecular Bacteriology, 3rd ed. Washington, DC: American Society for Microbiology; 2007; pp.330–393
    [Google Scholar]
  25. Wen CM, Tseng CS, Cheng CY, Li YK. Purification, characterization and cloning of a chitinase from Bacillus sp. NCTU2. Biotechnol Appl Biochem 2002;35:213–219 [CrossRef][PubMed]
    [Google Scholar]
  26. Bowman JP. Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov. Int J Syst Evol Microbiol 2000;50:1861–1868 [CrossRef][PubMed]
    [Google Scholar]
  27. Nokhal TH, Schlegel HG. Taxonomic study of Paracoccus denitrificans. Int J Syst Bacteriol 1983;33:26–37 [CrossRef]
    [Google Scholar]
  28. Ezaki T, Hashimoto Y, Yabuuchi E. Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 1989;39:224–229 [CrossRef]
    [Google Scholar]
  29. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987;37:463–464 [CrossRef]
    [Google Scholar]
  30. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  31. Embley TM, Wait R. Structural lipids of eubacteria. In Goodfellow M, O’Donnell AG. (editors) Chemical Methods in Prokaryotic Systematics Chichester: Wiley; 1994; pp.121–161
    [Google Scholar]
  32. Ryu SH, Chung BS, Park M, Lee SS, Lee SS et al. Rheinheimera soli sp. nov., a gammaproteobacterium isolated from soil in Korea. Int J Syst Evol Microbiol 2008;58:2271–2274 [CrossRef][PubMed]
    [Google Scholar]
  33. Park S, Park JM, Won SM, Jung YT, Yoon JH. Rheinheimera arenilitoris sp. nov., isolated from seashore sand. Int J Syst Evol Microbiol 2014;64:3749–3754 [CrossRef][PubMed]
    [Google Scholar]
  34. Zhong ZP, Liu Y, Liu LZ, Wang F, Zhou YG et al. Rheinheimera tuosuensis sp. nov., isolated from a saline lake. Int J Syst Evol Microbiol 2014;64:1142–1148 [CrossRef][PubMed]
    [Google Scholar]
  35. Baek K, Jeon CO. Rheinheimera aestuari sp. nov., a marine bacterium isolated from coastal sediment. Int J Syst Evol Microbiol 2015;65:2640–2645 [CrossRef][PubMed]
    [Google Scholar]
  36. Kumar A, Bajaj A, Mathan Kumar R, Kaur G, Kaur N et al. Taxonomic description and genome sequence of Rheinheimera mesophila sp. nov., isolated from an industrial waste site. Int J Syst Evol Microbiol 2015;65:3666–3673 [CrossRef][PubMed]
    [Google Scholar]
  37. Chen WM, Yang SH, Young CC, Sheu SY. Rheinheimera tilapiae sp. nov., isolated from a freshwater culture pond. Int J Syst Evol Microbiol 2013;63:1457–1463 [CrossRef][PubMed]
    [Google Scholar]
  38. Busse J, Auling G. Polyamine pattern as a chemotaxonomic marker within the Proteobacteria. Syst Appl Microbiol 1988;11:1–8
    [Google Scholar]
  39. Busse H-J, Bunka S, Hensel A, Lubitz W. Discrimination of members of the family Pasteurellaceae based on polyamine patterns. Int J Syst Bacteriol 1997;47:698–708 [CrossRef]
    [Google Scholar]
  40. Kämpfer P, Rosselló-Mora R, Hermansson M, Persson F, Huber B et al. Undibacterium pigrum gen. nov., sp. nov., isolated from drinking water. Int J Syst Evol Microbiol 2007;57:1510–1515 [CrossRef][PubMed]
    [Google Scholar]
  41. Collins MD. Isoprenoid quinones. In Goodfellow M, O’Donnell AG. (editors) Chemical Methods in Prokaryotic Systematics Chichester: Wiley; 1994; pp.265–309
    [Google Scholar]
  42. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989;39:159–167 [CrossRef]
    [Google Scholar]
  43. Zhang X, Sun L, Qiu F, McLean RJ, Jiang R et al. Rheinheimera tangshanensis sp. nov., a rice root-associated bacterium. Int J Syst Evol Microbiol 2008;58:2420–2424 [CrossRef][PubMed]
    [Google Scholar]
  44. Halpern M, Senderovich Y, Snir S. Rheinheimera chironomi sp. nov., isolated from a chironomid (Diptera; Chironomidae) egg mass. Int J Syst Evol Microbiol 2007;57:1872–1875 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002838
Loading
/content/journal/ijsem/10.1099/ijsem.0.002838
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error