1887

Abstract

A Gram-stain-positive strain, BS-W1, was isolated from a traditional fermented ma bamboo shoots (Dendrocalamus latiflorus Munro) product of Taiwan. It was rod-shaped, non-motile, non-haemolytic, asporogenous, facultatively anaerobic, heterofermentative and did not exhibit catalase or oxidase activities. Comparative analysis of 16S rRNA, pheS, rpoA and gyrB gene sequences demonstrated that the novel strain BS-W1 was a member of the genus Lactobacillus . On the basis of 16S RNA gene sequence similarity, the type strains of Lactobacillus oryzae (94.4 % similarity), Lactobacillus acidifarinae (93.8 %), Lactobacillus namurensis (93.7 %) and Lactobacillus zymae (93.7 %) were the closest neighbours to strain BS-W1. The pheS, rpoA and gyrB gene sequence similarities of strain BS-W1 to closely related these species were less than 80.2 %. DNA–DNA reassociation values with these type strains were 21.0–33.8 %. The DNA G+C content was 46.6 mol%. The average nucleotide identity values between BS-W1 and the closest relatives were lower than 70 %. Phenotypic and genotypic features demonstrated that the strain represents a novel species of the genus Lactobacillus , for which the name Lactobacillus bambusae sp. nov. is proposed. The type strain is BS-W1 (=BCRC 80970=NBRC 112377).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002837
2018-06-19
2019-08-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/8/2424.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002837&mimeType=html&fmt=ahah

References

  1. Tamang JP, Watanabe K, Holzapfel WH. Review: diversity of microorganisms in global fermented foods and beverages. Front Microbiol 2016;7:377–404 [CrossRef][PubMed]
    [Google Scholar]
  2. Tamang JP, Sarkar PK. Microbiology of mesu, a traditional fermented bamboo shoot product. Int J Food Microbiol 1996;29:49–58 [CrossRef][PubMed]
    [Google Scholar]
  3. Tamang B, Tamang JP, Schillinger U, Franz CM, Gores M et al. Phenotypic and genotypic identification of lactic acid bacteria isolated from ethnic fermented bamboo tender shoots of North East India. Int J Food Microbiol 2008;121:35–40 [CrossRef][PubMed]
    [Google Scholar]
  4. Tanasupawat S, Komagata K. Lactic acid bacteria in fermented foods in Thailand. World J Microbiol Biotechnol 1995;11:253–256 [CrossRef][PubMed]
    [Google Scholar]
  5. Chen YS, Wu HC, Liu CH, Chen HC, Yanagida F. Isolation and characterization of lactic acid bacteria from jiang-sun (fermented bamboo shoots), a traditional fermented food in Taiwan. J Sci Food Agric 2010;90:1977–1982 [CrossRef][PubMed]
    [Google Scholar]
  6. Edwards U, Rogall T, Blöcker H, Emde M, Böttger EC. Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Res 1989;17:7843–7853 [CrossRef][PubMed]
    [Google Scholar]
  7. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990;215:403–410 [CrossRef][PubMed]
    [Google Scholar]
  8. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007;23:2947–2948 [CrossRef][PubMed]
    [Google Scholar]
  9. Chor B, Hendy MD, Snir S. Maximum likelihood Jukes-Cantor triplets: analytic solutions. Mol Biol Evol 2006;23:626–632 [CrossRef][PubMed]
    [Google Scholar]
  10. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013;30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  11. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971;20:406–416 [CrossRef]
    [Google Scholar]
  12. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425 [CrossRef][PubMed]
    [Google Scholar]
  13. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39:783–791 [CrossRef][PubMed]
    [Google Scholar]
  14. Naser SM, Thompson FL, Hoste B, Gevers D, Dawyndt P et al. Application of multilocus sequence analysis (MLSA) for rapid identification of Enterococcus species based on rpoA and pheS genes. Microbiology 2005;151:2141–2150 [CrossRef][PubMed]
    [Google Scholar]
  15. Santos SR, Ochman H. Identification and phylogenetic sorting of bacterial lineages with universally conserved genes and proteins. Environ Microbiol 2004;6:754–759 [CrossRef][PubMed]
    [Google Scholar]
  16. Klimke W, Agarwala R, Badretdin A, Chetvernin S, Ciufo S et al. The national center for biotechnology information's protein clusters database. Nucleic Acids Res 2009;37:D216–D223 [CrossRef][PubMed]
    [Google Scholar]
  17. Lee I, Ouk Kim Y, Park SC, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016;66:1100–1103 [CrossRef][PubMed]
    [Google Scholar]
  18. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013;14:60 [CrossRef][PubMed]
    [Google Scholar]
  19. Tamaoka J, Komagata K. Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 1984;25:125–128 [CrossRef]
    [Google Scholar]
  20. Ezaki T, Hashimoto Y, Yabuuchi E. Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 1989;39:224–229 [CrossRef]
    [Google Scholar]
  21. Goris J, Suzuki KI, Vos PD, Nakase T, Kersters K. Evaluation of a microplate DNA–DNA hybridization method compared with the initial renaturation method. Can J Microbiol 1998;44:1148–1153 [CrossRef]
    [Google Scholar]
  22. Stackebrandt E, Goebel BM. Taxonomic Note: a place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 1994;44:846–849 [CrossRef]
    [Google Scholar]
  23. Barrow GI, Feltham RKA. (editors) Cowan and Steel’s Manual for the Identification of Medical Bacteria, 3rd ed. Cambridge: Cambridge University Press; 1993
    [Google Scholar]
  24. Kandler O, Weiss N. Genus Lactobacillus Beijerinck 1901, 212AL. In Sneath PHA, Mair NS, Sharpe ME, Holt JG. (editors) Bergey’s Manual of Systematic Bacteriologyvol. 2 Baltimore: Williams & Wilkins; 1986; pp.1209–1234
    [Google Scholar]
  25. Hamada M, Yamamura H, Komukai C, Tamura T, Suzuki K et al. Luteimicrobium album sp. nov., a novel actinobacterium isolated from a lichen collected in Japan, and emended description of the genus Luteimicrobium. J Antibiot 2012;65:427–431 [CrossRef][PubMed]
    [Google Scholar]
  26. Nozawa Y, Sakai N, Arai K, Kawasaki Y, Harada K. Reliable and sensitive analysis of amino acids in the peptidoglycan of actinomycetes using the advanced Marfey's method. J Microbiol Methods 2007;70:306–311 [CrossRef][PubMed]
    [Google Scholar]
  27. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids. USFCC Newsl 1990;20:16
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002837
Loading
/content/journal/ijsem/10.1099/ijsem.0.002837
Loading

Data & Media loading...

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error