1887

Abstract

A Gram-stain-negative, aerobic, motile and rod-shaped bacterium, strain ZMN-3, was isolated from desert soil sample collected from Ongniod Qi, Inner Mongolia, China. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain ZMN-3 was affiliated with the genus Massilia and showed the highest similarity to Massilia humi THG S6-8 (98.9 %) and Massilia buxea A9 (98.2 %). In partial gyrB and lepA sequences, the highest similarity of strain ZMN-3 and M. humi THG S6-8 were 95.9 and 96.8 %, respectively. The DNA–DNA hybridization value between strain ZMN-3 and its closely related type strains were all below 70 %. The major respiratory quinone of strain ZMN-3 was Q-8 and the major cellular fatty acids consisted of summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c) and C16 : 0. The predominant polar lipids contained diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and an unidentified phospholipid. The DNA G+C content of strain ZMN-3 was 66.3 mol%. On the basis of this polyphasic taxonomic study, strain ZMN-3 is considered to represent a novel species of the genus Massilia , for which the name Massilia armeniaca sp. nov. is proposed. The type strain is ZMN-3 (=CGMCC 1.16209=DSM 104676).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002836
2018-05-22
2019-09-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/7/2319.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002836&mimeType=html&fmt=ahah

References

  1. La Scola B, Birtles RJ, Mallet MN, Raoult D. Massilia timonae gen. nov., sp. nov., isolated from blood of an immunocompromised patient with cerebellar lesions. J Clin Microbiol 1998; 36: 2847– 2852 [PubMed]
    [Google Scholar]
  2. Kämpfer P, Lodders N, Martin K, Falsen E. Revision of the genus Massilia La Scola et al. 2000, with an emended description of the genus and inclusion of all species of the genus Naxibacter as new combinations, and proposal of Massilia consociata sp. nov. Int J Syst Evol Microbiol 2011; 61: 1528– 1533 [CrossRef] [PubMed]
    [Google Scholar]
  3. Sun LN, Yang ED, Cui DX, Ni YW, Wang YB et al. Massilia buxea sp. nov., isolated from a rock surface. Int J Syst Evol Microbiol 2017; 67: 4390– 4396 [CrossRef] [PubMed]
    [Google Scholar]
  4. Guo B, Liu Y, Gu Z, Shen L, Liu K et al. Massilia psychrophila sp. nov., isolated from an ice core. Int J Syst Evol Microbiol 2016; 66: 4088– 4093 [CrossRef] [PubMed]
    [Google Scholar]
  5. Gu Z, Liu Y, Xu B, Wang N, Jiao N et al. Massilia glaciei sp. nov., isolated from the Muztagh Glacier. Int J Syst Evol Microbiol 2017; 67: 4075– 4079 [CrossRef] [PubMed]
    [Google Scholar]
  6. Zheng BX, Bi QF, Hao XL, Zhou GW, Yang XR. Massilia phosphatilytica sp. nov., a phosphate solubilizing bacteria isolated from a long-term fertilized soil. Int J Syst Evol Microbiol 2017; 67: 2514– 2519 [CrossRef] [PubMed]
    [Google Scholar]
  7. Altankhuu K, Kim J. Massilia solisilvae sp. nov., Massilia terrae sp. nov. and Massilia agilis sp. nov., isolated from forest soil in South Korea by using a newly developed culture method. Int J Syst Evol Microbiol 2017; 67: 3026– 3032 [CrossRef] [PubMed]
    [Google Scholar]
  8. Chaudhary DK, Kim J. Massilia agri sp. nov., isolated from reclaimed grassland soil. Int J Syst Evol Microbiol 2017; 67: 2696– 2703 [CrossRef] [PubMed]
    [Google Scholar]
  9. Du J, Yin CS. Massilia humi sp. nov. isolated from soil in Incheon, South Korea. Arch Microbiol 2016; 198: 363– 367 [CrossRef] [PubMed]
    [Google Scholar]
  10. Zhao X, Li X, Qi N, Gan M, Pan Y et al. Massilia neuiana sp. nov., isolated from wet soil. Int J Syst Evol Microbiol 2017; 67: 4943– 4947 [CrossRef] [PubMed]
    [Google Scholar]
  11. Embley TM. The linear PCR reaction: a simple and robust method for sequencing amplified rRNA genes. Lett Appl Microbiol 1991; 13: 171– 174 [CrossRef] [PubMed]
    [Google Scholar]
  12. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012; 62: 716– 721 [CrossRef] [PubMed]
    [Google Scholar]
  13. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30: 2725– 2729 [CrossRef] [PubMed]
    [Google Scholar]
  14. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25: 4876– 4882 [CrossRef] [PubMed]
    [Google Scholar]
  15. Orthová I, Kämpfer P, Glaeser SP, Kaden R, Busse HJ. Massilia norwichensis sp. nov., isolated from an air sample. Int J Syst Evol Microbiol 2015; 65: 56– 64 [CrossRef] [PubMed]
    [Google Scholar]
  16. Cashion P, Holder-Franklin MA, Mccully J, Franklin M. A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 1977; 81: 461– 466 [CrossRef] [PubMed]
    [Google Scholar]
  17. De Ley J, Cattoir H, Reynaerts A. The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 1970; 12: 133– 142 [CrossRef] [PubMed]
    [Google Scholar]
  18. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987; 37: 463– 464 [CrossRef]
    [Google Scholar]
  19. Lee I, Ouk Kim Y, Park SC, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66: 1100– 1103 [CrossRef] [PubMed]
    [Google Scholar]
  20. Tindall BJ, Rosselló-Móra R, Busse HJ, Ludwig W, Kämpfer P. Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol 2010; 60: 249– 266 [CrossRef] [PubMed]
    [Google Scholar]
  21. Buck JD. Nonstaining (KOH) method for determination of gram reactions of marine bacteria. Appl Environ Microbiol 1982; 44: 992– 993 [PubMed]
    [Google Scholar]
  22. Lányi B. Classical and rapid identification methods for medically important bacteria. Methods Microbiol 1988; 19: 1– 67 [Crossref]
    [Google Scholar]
  23. Huang HD, Wang W, Ma T, Li GQ, Liang FL et al. Sphingomonas sanxanigenens sp. nov., isolated from soil. Int J Syst Evol Microbiol 2009; 59: 719– 723 [CrossRef] [PubMed]
    [Google Scholar]
  24. Tindall BJ. A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 1990; 13: 128– 130 [CrossRef]
    [Google Scholar]
  25. Altenburgera P, Kämpferb P, Makristathisc A, Lubitza W, Bussea H-J. Classification of bacteria isolated from a medieval wall painting. J Biotechnol 1996; 47: 39– 52 [CrossRef]
    [Google Scholar]
  26. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  27. Kämpfer P, Irgang R, Busse HJ, Poblete-Morales M, Kleinhagauer T et al. Pseudoduganella danionis sp. nov., isolated from zebrafish (Danio rerio). Int J Syst Evol Microbiol 2016; 66: 4671– 4675 [CrossRef] [PubMed]
    [Google Scholar]
  28. Li WJ, Zhang YQ, Park DJ, Li CT, Xu LH et al. Duganella violaceinigra sp. nov., a novel mesophilic bacterium isolated from forest soil. Int J Syst Evol Microbiol 2004; 54: 1811– 1814 [CrossRef] [PubMed]
    [Google Scholar]
  29. Kämpfer P, Wellner S, Lohse K, Martin K, Lodders N. Duganella phyllosphaerae sp. nov., isolated from the leaf surface of Trifolium repens and proposal to reclassify Duganella violaceinigra into a novel genus as Pseudoduganella violceinigra gen. nov., comb. nov. Syst Appl Microbiol 2012; 35: 19– 23 [CrossRef] [PubMed]
    [Google Scholar]
  30. Lindquist D, Murrill D, Burran WP, Winans G, Janda JM et al. Characteristics of Massilia timonae and Massilia timonae-like isolates from human patients, with an emended description of the species. J Clin Microbiol 2003; 41: 192– 196 [CrossRef] [PubMed]
    [Google Scholar]
  31. Zhang YQ, Li WJ, Zhang KY, Tian XP, Jiang Y et al. Massilia dura sp. nov., Massilia albidiflava sp. nov., Massilia plicata sp. nov. and Massilia lutea sp. nov., isolated from soils in China. Int J Syst Evol Microbiol 2006; 56: 459– 463 [CrossRef] [PubMed]
    [Google Scholar]
  32. Weon HY, Kim BY, Son JA, Jang HB, Hong SK et al. Massilia aerilata sp. nov., isolated from an air sample. Int J Syst Evol Microbiol 2008; 58: 1422– 1425 [CrossRef] [PubMed]
    [Google Scholar]
  33. Embarcadero-Jiménez S, Peix Á, Igual JM, Rivera-Orduña FN, Tao Wang E. Massilia violacea sp. nov., isolated from riverbank soil. Int J Syst Evol Microbiol 2016; 66: 707– 711 [CrossRef] [PubMed]
    [Google Scholar]
  34. Wang J, Zhang J, Pang H, Zhang Y, Li Y et al. Massilia flava sp. nov., isolated from soil. Int J Syst Evol Microbiol 2012; 62: 580– 585 [CrossRef] [PubMed]
    [Google Scholar]
  35. Rodríguez-Díaz M, Cerrone F, Sánchez-Peinado M, Santacruz-Calvo L, Pozo C et al. Massilia umbonata sp. nov., able to accumulate poly-β-hydroxybutyrate, isolated from a sewage sludge compost-soil microcosm. Int J Syst Evol Microbiol 2014; 64: 131– 137 [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002836
Loading
/content/journal/ijsem/10.1099/ijsem.0.002836
Loading

Data & Media loading...

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error