1887

Abstract

Roseobacters are a diverse and globally abundant group of Alphaproteobacteria within the Rhodobacteraceae family. Recent studies and the cophenetic correlations suggest that the 16S rRNA genes are poor phylogenetic markers within this group. In contrast, the cophenetic correlation coefficients of the core-gene average amino acid identity (cAAI) and RpoC protein sequences are high and likely more predictive of relationships. A maximum-likelihood phylogenetic tree calculated from 53 core genes demonstrated that some of the current genera were either polyphyletic or paraphyletic. The boundaries of bacterial genera were redefined based upon the cAAI, the percentage of conserved proteins, and phenotypic characteristics and resulted in the following taxonomic proposals. Loktanella vestfoldensis , Loktanella litorea , Loktanella maricola , Loktanella maritima , Loktanella rosea , Loktanella sediminilitoris , Loktanella tamlensis , and Roseobacter sp. CCS2 should be reclassified into the novel genus Yoonia. Loktanella hongkongensis , Loktanella aestuariicola , Loktanella cinnabarina , Loktanella pyoseonensis , Loktanellasoe soekkakensis and Loktanella variabilis should be reclassified in the novel genus Limimaricola. Loktanella koreensis and Loktanella sediminum should be reclassified in the novel genus Cognatiyoonia. Loktanella marina should be reclassified in the novel genus Flavimaricola. Aestuariivita atlantica should be reclassified in the novel genus Pseudaestuariivita. Thalassobius maritima should be reclassified in the novel genus Cognatishimia. Similarly, Ruegeria mobilis , Ruegeria scottomollicae , Ruegeria sp. TM1040 and Tropicibacter multivorans should be reclassified in the genus Epibacterium . Tropicibacter litoreus and Tropicibacter mediterraneus should be reclassified in the genus Ruegeria . Thalassobius abyssi and Thalassobius aestuarii should be reclassified in the genus Shimia . Citreicella aestuarii , Citreicella manganoxidans , Citreicella marina , Citreicella thiooxidans , Pelagibaca bermudensis and Thiobacimonas profunda should be reclassified in the genus Salipiger . Nautella italica should be reclassified in the genus Phaeobacter . Because these proposals to reclassify the type and all others species of Citreicella , Nautella , Pelagibaca and Thiobacimonas , these genera are not used in this taxonomy.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002833
2018-05-29
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/7/2393.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002833&mimeType=html&fmt=ahah

References

  1. Brinkhoff T, Giebel HA, Simon M. Diversity, ecology, and genomics of the Roseobacter clade: a short overview. Arch Microbiol 2008; 189: 531– 539 [CrossRef] [PubMed]
    [Google Scholar]
  2. Buchan A, González JM, Moran MA. Overview of the marine Roseobacter lineage. Appl Environ Microbiol 2005; 71: 5665– 5677 [CrossRef] [PubMed]
    [Google Scholar]
  3. Simon M, Scheuner C, Meier-Kolthoff JP, Brinkhoff T, Wagner-Döbler I et al. Phylogenomics of Rhodobacteraceae reveals evolutionary adaptation to marine and non-marine habitats. ISME J 2017; 11: 1483– 1499 [CrossRef] [PubMed]
    [Google Scholar]
  4. Pujalte MJ, Lucena T, Ruvira MA, Arahal DR, Macián MC et al. The family Rhodobacteraceae. In Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F et al. (editors) The Prokaryotes: Alphaproteobacteria and Betaproteobacteria Berlin, Heidelberg: Springer Berlin Heidelberg; 2014; pp. 439– 512 [Crossref]
    [Google Scholar]
  5. Luo H, Moran MA. Evolutionary ecology of the marine Roseobacter clade. Microbiol Mol Biol Rev 2014; 78: 573– 587 [CrossRef] [PubMed]
    [Google Scholar]
  6. Breider S, Scheuner C, Schumann P, Fiebig A, Petersen J et al. Genome-scale data suggest reclassifications in the Leisingera-Phaeobacter cluster including proposals for Sedimentitalea gen. nov. and Pseudophaeobacter gen. nov. Front Microbiol 2014; 5: 416 [CrossRef] [PubMed]
    [Google Scholar]
  7. Yarza P, Richter M, Peplies J, Euzeby J, Amann R et al. The All-Species Living Tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. Syst Appl Microbiol 2008; 31: 241– 250 [CrossRef] [PubMed]
    [Google Scholar]
  8. Cole JR, Wang Q, Fish JA, Chai B, McGarrell DM et al. Ribosomal Database Project: data and tools for high throughput rRNA analysis. Nucleic Acids Res 2014; 42: D633– D642 [CrossRef] [PubMed]
    [Google Scholar]
  9. Maddison WPM, David R. 2017; Mesqute: a modular system for evolutionary analysis version 3.2. http://mesquiteproject.org
  10. Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 2010; 59: 307– 321 [CrossRef] [PubMed]
    [Google Scholar]
  11. Lefort V, Longueville JE, Gascuel O. SMS: smart model selection in PhyML. Mol Biol Evol 2017
    [Google Scholar]
  12. Blom J, Kreis J, Spänig S, Juhre T, Bertelli C et al. EDGAR 2.0: an enhanced software platform for comparative gene content analyses. Nucleic Acids Res 2016; 44: W22– W28 [CrossRef] [PubMed]
    [Google Scholar]
  13. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57: 81– 91 [CrossRef] [PubMed]
    [Google Scholar]
  14. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004; 32: 1792– 1797 [CrossRef]
    [Google Scholar]
  15. Beukes CW, Palmer M, Manyaka P, Chan WY, Avontuur JR et al. Genome data provides high support for generic boundaries in Burkholderia sensu lato. Front Microbiol 2017; 8: 1154 [CrossRef]
    [Google Scholar]
  16. Capella-Gutierrez S, Silla-Martinez JM, Gabaldon T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 2009; 25: 1972– 1973 [CrossRef]
    [Google Scholar]
  17. Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 2015; 32: 268– 274 [CrossRef] [PubMed]
    [Google Scholar]
  18. Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods 2017; 14: 587– 589 [CrossRef]
    [Google Scholar]
  19. Qin QL, Xie BB, Zhang XY, Chen XL, Zhou BC et al. A proposed genus boundary for the prokaryotes based on genomic insights. J Bacteriol 2014; 196: 2210– 2215 [CrossRef] [PubMed]
    [Google Scholar]
  20. Schliep KP. phangorn: phylogenetic analysis in R. Bioinformatics 2011; 27: 592– 593 [CrossRef]
    [Google Scholar]
  21. Sneath PHA, Sokal RR. Numerical Taxonomy; the Principles and Practice of Numerical Classification San Francisco: W. H. Freeman; 1973
    [Google Scholar]
  22. Keswani J, Whitman WB. Relationship of 16S rRNA sequence similarity to DNA hybridization in prokaryotes. Int J Syst Evol Microbiol 2001; 51: 667– 678 [CrossRef]
    [Google Scholar]
  23. Case RJ, Boucher Y, Dahllöf I, Holmström C, Doolittle WF et al. Use of 16S rRNA and rpoB genes as molecular markers for microbial ecology studies. Appl Environ Microbiol 2007; 73: 278– 288 [CrossRef] [PubMed]
    [Google Scholar]
  24. Vos M, Quince C, Pijl AS, de Hollander M, Kowalchuk GA. A comparison of rpoB and 16S rRNA as markers in pyrosequencing studies of bacterial diversity. PLoS One 2012; 7: e30600 [CrossRef] [PubMed]
    [Google Scholar]
  25. Bondoso J, Harder J, Lage OM. rpoB gene as a novel molecular marker to infer phylogeny in Planctomycetales. Antonie van Leeuwenhoek 2013; 104: 477– 488 [CrossRef]
    [Google Scholar]
  26. Aliyu H, Lebre P, Blom J, Cowan D, De Maayer P. Phylogenomic re-assessment of the thermophilic genus Geobacillus. Syst Appl Microbiol 2016; 39: 527– 533 [CrossRef] [PubMed]
    [Google Scholar]
  27. Li Y, Xue H, Sang SQ, Lin CL, Wang XZ. Phylogenetic analysis of family Neisseriaceae based on genome sequences and description of Populibacter corticis gen. nov., sp. nov., a member of the family Neisseriaceae, isolated from symptomatic bark of Populus × euramericana canker. PLoS One 2017; 12: e0174506 [CrossRef] [PubMed]
    [Google Scholar]
  28. Lopes-Santos L, Castro DBA, Ferreira-Tonin M, Corrêa DBA, Weir BS et al. Reassessment of the taxonomic position of Burkholderia andropogonis and description of Robbsia andropogonis gen. nov., comb. nov. Antonie van Leeuwenhoek 2017; 110: 727– 736 [CrossRef] [PubMed]
    [Google Scholar]
  29. Konstantinidis KT, Tiedje JM. Towards a genome-based taxonomy for prokaryotes. J Bacteriol 2005; 187: 6258– 6264 [CrossRef] [PubMed]
    [Google Scholar]
  30. Luo C, Rodriguez-R LM, Konstantinidis KT. MyTaxa: an advanced taxonomic classifier for genomic and metagenomic sequences. Nucleic Acids Res 2014; 42: e73 [CrossRef] [PubMed]
    [Google Scholar]
  31. Penesyan A, Breider S, Schumann P, Tindall BJ, Egan S et al. Epibacterium ulvae gen. nov., sp. nov., epibiotic bacteria isolated from the surface of a marine alga. Int J Syst Evol Microbiol 2013; 63: 1589– 1596 [CrossRef]
    [Google Scholar]
  32. Alavi M, Miller T, Erlandson K, Schneider R, Belas R. Bacterial community associated with Pfiesteria-like dinoflagellate cultures. Environ Microbiol 2001; 3: 380– 396 [CrossRef]
    [Google Scholar]
  33. Miller TR, Hnilicka K, Dziedzic A, Desplats P, Belas R. Chemotaxis of Silicibacter sp. strain TM1040 toward dinoflagellate products. Appl Environ Microbiol 2004; 70: 4692– 4701 [CrossRef] [PubMed]
    [Google Scholar]
  34. Muramatsu Y, Uchino Y, Kasai H, Suzuki K, Nakagawa Y. Ruegeria mobilis sp. nov., a member of the Alphaproteobacteria isolated in Japan and Palau. Int J Syst Evol Microbiol 2007; 57: 1304– 1309 [CrossRef] [PubMed]
    [Google Scholar]
  35. Vandecandelaere I, Nercessian O, Segaert E, Achouak W, Faimali M et al. Ruegeria scottomollicae sp. nov., isolated from a marine electroactive biofilm. Int J Syst Evol Microbiol 2008; 58: 2726– 2733 [CrossRef] [PubMed]
    [Google Scholar]
  36. Park S, Lee MH, Lee JS, Oh TK, Yoon JH. Thalassobius maritimus sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2012; 62: 8– 12 [CrossRef] [PubMed]
    [Google Scholar]
  37. Weon HY, Kim BY, Yoo SH, Kim JS, Kwon SW et al. Loktanella koreensis sp. nov., isolated from sea sand in Korea. Int J Syst Evol Microbiol 2006; 56: 2199– 2202 [CrossRef] [PubMed]
    [Google Scholar]
  38. Liang J, Zhang Z, Liu Y, Wang M, Zhang XH. Loktanella sediminum sp. nov., isolated from marine surface sediment. Int J Syst Evol Microbiol 2015; 65: 686– 691 [CrossRef] [PubMed]
    [Google Scholar]
  39. Lucena T, Pujalte MJ, Ruvira MA, Garay E, Macian MC et al. Tropicibacter multivorans sp. nov., an aerobic alphaproteobacterium isolated from surface seawater. Int J Syst Evol Microbiol 2012; 62: 844– 848 [CrossRef]
    [Google Scholar]
  40. Jung YT, Park S, Lee JS, Yoon JH. Loktanella marina sp. nov., isolated from seawater of Yellow Sea in South Korea. Int J Syst Evol Microbiol 2016; 66: 2528– 2533 [Crossref]
    [Google Scholar]
  41. Lau SC, Tsoi MM, Li X, Plakhotnikova I, Wu M et al. Loktanella hongkongensis sp. nov., a novel member of the alpha-Proteobacteria originating from marine biofilms in Hong Kong waters. Int J Syst Evol Microbiol 2004; 54: 2281– 2284 [CrossRef] [PubMed]
    [Google Scholar]
  42. Park S, Jung YT, Won SM, Park JM, Yoon JH. Loktanella aestuariicola sp. nov., an alphaproteobacterium isolated from a tidal flat. Antonie van Leeuwenhoek 2014; 106: 707– 714 [CrossRef] [PubMed]
    [Google Scholar]
  43. Tsubouchi T, Shimane Y, Mori K, Miyazaki M, Tame A et al. Loktanella cinnabarina sp. nov., isolated from a deep subseafloor sediment, and emended description of the genus Loktanella. Int J Syst Evol Microbiol 2013; 63: 1390– 1395 [CrossRef]
    [Google Scholar]
  44. Moon YG, Seo SH, Lee SD, Heo MS. Loktanella pyoseonensis sp. nov., isolated from beach sand, and emended description of the genus Loktanella. Int J Syst Evol Microbiol 2010; 60: 785– 789 [CrossRef]
    [Google Scholar]
  45. Park S, Lee JS, Lee KC, Yoon JH. Loktanella soesokkakensis sp. nov., isolated from the junction between the North Pacific Ocean and a freshwater spring. Antonie van Leeuwenhoek 2013; 104: 397– 404 [CrossRef] [PubMed]
    [Google Scholar]
  46. Park JM, Park S, Jung YT, Cho JY, Yoon JH. Loktanella variabilis sp. nov., isolated from a tidal flat. Int J Syst Evol Microbiol 2014; 64: 2579– 2585 [CrossRef] [PubMed]
    [Google Scholar]
  47. van Trappen S, Mergaert J, Swings J. Loktanella salsilacus gen. nov., sp. nov., Loktanella fryxellensis sp. nov. and Loktanella vestfoldensis sp. nov., new members of the Rhodobacter group, isolated from microbial mats in Antarctic lakes. Int J Syst Evol Microbiol 2004; 54: 1263– 1269 [CrossRef]
    [Google Scholar]
  48. Lee SD. Loktanella tamlensis sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2012; 62: 586– 590 [CrossRef]
    [Google Scholar]
  49. Martens T, Heidorn T, Pukall R, Simon M, Tindall BJ et al. Reclassification of Roseobacter gallaeciensis Ruiz-Ponte et al. 1998 as Phaeobacter gallaeciensis gen. nov., comb. nov., description of Phaeobacter inhibens sp. nov., reclassification of Ruegeria algicola (Lafay et al. 1995) Uchino et al. 1999 as Marinovum algicola gen. nov., comb. nov., and emended descriptions of the genera Roseobacter, Ruegeria and Leisingera. Int J Syst Evol Microbiol 2006; 56: 1293– 1304 [CrossRef] [PubMed]
    [Google Scholar]
  50. Vandecandelaere I, Nercessian O, Segaert E, Achouak W, Mollica A et al. Nautella italica gen. nov., sp. nov., isolated from a marine electroactive biofilm. Int J Syst Evol Microbiol 2009; 59: 811– 817 [CrossRef]
    [Google Scholar]
  51. Li G, Lai Q, du Y, Liu X, Sun F et al. Aestuariivita atlantica sp. nov., isolated from deep-sea sediment. Int J Syst Evol Microbiol 2015; 65: 3281– 3285 [CrossRef] [PubMed]
    [Google Scholar]
  52. Uchino Y, Hirata A, Yokota A, Sugiyama J. Reclassification of marine Agrobacterium species: Proposals of Stappia stellulata gen. nov., comb. nov., Stappia aggregata sp. nov., nom. rev., Ruegeria atlantica gen. nov., comb. nov., Ruegeria gelatinovora comb. nov., Ruegeria algicola comb. nov., and Ahrensia kieliense gen. nov., sp. nov., nom. rev. J Gen Appl Microbiol 1998; 44: 201– 210 [CrossRef]
    [Google Scholar]
  53. Yi H, Lim YW, Chun J. Taxonomic evaluation of the genera Ruegeria and Silicibacter: a proposal to transfer the genus Silicibacter Petursdottir and Kristjansson 1999 to the genus Ruegeria Uchino et al. 1999. Int J Syst Evol Microbiol 2007; 57: 815– 819 [CrossRef] [PubMed]
    [Google Scholar]
  54. Lucena T, Ruvira MA, Macián MC, Pujalte MJ, Arahal DR. Description of Tropicibacter mediterraneus sp. nov. and Tropicibacter litoreus sp. nov. Syst Appl Microbiol 2013; 36: 325– 329 [CrossRef] [PubMed]
    [Google Scholar]
  55. Martínez-Cánovas MJ, Quesada E, Martínez-Checa F, del Moral A, Béjar V. Salipiger mucescens gen. nov., sp. nov., a moderately halophilic, exopolysaccharide-producing bacterium isolated from hypersaline soil, belonging to the alpha-Proteobacteria. Int J Syst Evol Microbiol 2004; 54: 1735– 1740 [CrossRef] [PubMed]
    [Google Scholar]
  56. Park MS, Chung BS, Lee HJ, Jin HM, Lee SS et al. Citreicella aestuarii sp. nov., isolated from a tidal flat. Int J Syst Evol Microbiol 2011; 61: 2595– 2599 [CrossRef] [PubMed]
    [Google Scholar]
  57. Cho JC, Giovannoni SJ. Pelagibaca bermudensis gen. nov., sp. nov., a novel marine bacterium within the Roseobacter clade in the order Rhodobacterales. Int J Syst Evol Microbiol 2006; 56: 855– 859 [CrossRef] [PubMed]
    [Google Scholar]
  58. Rajasabapathy R, Mohandass C, Dastager SG, Liu Q, Li WJ et al. Citreicella manganoxidans sp. nov., a novel manganese oxidizing bacterium isolated from a shallow water hydrothermal vent in Espalamaca (Azores). Antonie van Leeuwenhoek 2015; 108: 1433– 1439 [CrossRef] [PubMed]
    [Google Scholar]
  59. Lai Q, Fu Y, Wang J, Chen S, Zhong H et al. Citreicella marina sp. nov., isolated from deep-sea sediment. Int J Syst Evol Microbiol 2011; 61: 728– 731 [CrossRef]
    [Google Scholar]
  60. Li S, Tang K, Liu K, Jiao N. Thiobacimonas profunda gen. nov., sp. nov., a member of the family Rhodobacteraceae isolated from deep-sea water. Int J Syst Evol Microbiol 2015; 65: 359– 364 [CrossRef]
    [Google Scholar]
  61. Sorokin DY, Tourova TP, Muyzer G. Citreicella thiooxidans gen. nov., sp. nov., a novel lithoheterotrophic sulfur-oxidizing bacterium from the Black Sea. Syst Appl Microbiol 2005; 28: 679– 687 [CrossRef]
    [Google Scholar]
  62. Choi DH, Cho BC. Shimia marina gen. nov., sp. nov., a novel bacterium of the Roseobacter clade isolated from biofilm in a coastal fish farm. Int J Syst Evol Microbiol 2006; 56: 1869– 1873 [CrossRef]
    [Google Scholar]
  63. Hameed A, Shahina M, Lin SY, Lai WA, Hsu YH et al. Shimia biformata sp. nov., isolated from surface seawater, and emended description of the genus Shimia Choi and Cho 2006. Int J Syst Evol Microbiol 2013; 63: 4533– 4539 [CrossRef] [PubMed]
    [Google Scholar]
  64. Nogi Y, Mori K, Makita H, Hatada Y. Thalassobius abyssi sp. nov., a marine bacterium isolated from cold-seep sediment. Int J Syst Evol Microbiol 2016; 66: 574– 579 [CrossRef] [PubMed]
    [Google Scholar]
  65. Yi H, Chun J. Thalassobius aestuarii sp. nov., isolated from tidal flat sediment. J Microbiol 2006; 44: 171– 176
    [Google Scholar]
  66. Park S, Jung YT, Won SM, Park JM, Yoon JH. Thalassobius aquaeponti sp. nov., an alphaproteobacterium isolated from seawater. Antonie van Leeuwenhoek 2014; 106: 535– 542 [CrossRef] [PubMed]
    [Google Scholar]
  67. Yoon JH, Jung YT, Lee JS. Loktanella litorea sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2013; 63: 175– 180 [CrossRef] [PubMed]
    [Google Scholar]
  68. Yoon JH, Kang SJ, Lee SY, Oh TK. Loktanella maricola sp. nov., isolated from seawater of the East Sea in Korea. Int J Syst Evol Microbiol 2007; 57: 1799– 1802 [CrossRef] [PubMed]
    [Google Scholar]
  69. Tanaka N, Romanenko LA, Kurilenko VV, Svetashev VI, Kalinovskaya NI et al. Loktanella maritima sp. nov. isolated from shallow marine sediments. Int J Syst Evol Microbiol 2014; 64: 2370– 2375 [CrossRef]
    [Google Scholar]
  70. Ivanova EP et al. Loktanella agnita sp. nov. and Loktanella rosea sp. nov., from the north-west Pacific Ocean. Int J Syst Evol Microbiol 2005; 55: 2203– 2207 [CrossRef]
    [Google Scholar]
  71. Park S, Jung YT, Yoon JH. Loktanella sediminilitoris sp. nov., isolated from tidal flat sediment. Int J Syst Evol Microbiol 2013; 63: 4118– 4123 [CrossRef] [PubMed]
    [Google Scholar]
  72. Hosoya S, Yokota A. Loktanella atrilutea sp. nov., isolated from seawater in Japan. Int J Syst Evol Microbiol 2007; 57: 1966– 1969 [CrossRef]
    [Google Scholar]
  73. Rüger HJ, Höfle MG. Marine star-shaped-aggregate-forming bacteria: Agrobacterium atlanticum sp. nov.; Agrobacterium meteori sp. nov.; Agrobacterium ferrugineum sp. nov., nom. rev.; Agrobacterium gelatinovorum sp. nov., nom. rev.; and Agrobacterium stellulatum sp. nov., nom. rev. Int J Syst Bacteriol 1992; 42: 133– 143 [CrossRef] [PubMed]
    [Google Scholar]
  74. Park S, Yoon JH. Ruegeria arenilitoris sp. nov., isolated from the seashore sand around a seaweed farm. Antonie van Leeuwenhoek 2012; 102: 581– 589 [CrossRef] [PubMed]
    [Google Scholar]
  75. Lee J, Whon TW, Shin NR, Roh SW, Kim J et al. Ruegeria conchae sp. nov., isolated from the ark clam Scapharca broughtonii. Int J Syst Evol Microbiol 2012; 62: 2851– 2857 [CrossRef] [PubMed]
    [Google Scholar]
  76. Oh KH, Jung YT, Oh TK, Yoon JH. Ruegeria faecimaris sp. nov., isolated from a tidal flat sediment. Int J Syst Evol Microbiol 2011; 61: 1182– 1188 [CrossRef] [PubMed]
    [Google Scholar]
  77. Kim YO, Park S, Nam BH, Kang SJ, Hur YB et al. Ruegeria halocynthiae sp. nov., isolated from the sea squirt Halocynthia roretzi. Int J Syst Evol Microbiol 2012; 62: 925– 930 [CrossRef] [PubMed]
    [Google Scholar]
  78. Kämpfer P, Arun AB, Rekha PD, Busse HJ, Young CC et al. Ruegeria intermedia sp. nov., a moderately thermophilic bacterium isolated from a coastal hot spring. Int J Syst Evol Microbiol 2013; 63: 2538– 2544 [CrossRef] [PubMed]
    [Google Scholar]
  79. Petursdottir SK, Kristjansson JK. Silicibacter lacuscaerulensis gen. nov., sp. nov., a mesophilic moderately halophilic bacterium characteristic of the Blue Lagoon geothermal lake in Iceland. Extremophiles 1997; 1: 94– 99 [CrossRef] [PubMed]
    [Google Scholar]
  80. Huo YY, Xu XW, Li X, Liu C, Cui HL et al. Ruegeria marina sp. nov., isolated from marine sediment. Int J Syst Evol Microbiol 2011; 61: 347– 350 [CrossRef] [PubMed]
    [Google Scholar]
  81. Kim YO, Park S, Nam BH, Jung YT, Kim DG et al. Ruegeria meonggei sp. nov., an alphaproteobacterium isolated from ascidian Halocynthia roretzi. Antonie van Leeuwenhoek 2014; 105: 551– 558 [CrossRef] [PubMed]
    [Google Scholar]
  82. González JM, Covert JS, Whitman WB, Henriksen JR, Mayer F et al. Silicibacter pomeroyi sp. nov. and Roseovarius nubinhibens sp. nov., dimethylsulfoniopropionate-demethylating bacteria from marine environments. Int J Syst Evol Microbiol 2003; 53: 1261– 1269 [CrossRef] [PubMed]
    [Google Scholar]
  83. Harwati TU, Kasai Y, Kodama Y, Susilaningsih D, Watanabe K. Tropicibacter naphthalenivorans gen. nov., sp. nov., a polycyclic aromatic hydrocarbon-degrading bacterium isolated from Semarang Port in Indonesia. Int J Syst Evol Microbiol 2009; 59: 392– 396 [CrossRef]
    [Google Scholar]
  84. Iwaki H, Nishimura A, Hasegawa Y. Tropicibacter phthalicus sp. nov., a phthalate-degrading bacterium from seawater. Curr Microbiol 2012; 64: 392– 396 [CrossRef] [PubMed]
    [Google Scholar]
  85. Arahal DR, Macián MC, Garay E, Pujalte MJ. Thalassobius mediterraneus gen. nov., sp. nov., and reclassification of Ruegeria gelatinovorans as Thalassobius gelatinovorus comb. nov. Int J Syst Evol Microbiol 2005; 55: 2371– 2376 [CrossRef] [PubMed]
    [Google Scholar]
  86. Hyun DW, Kim MS, Shin NR, Kim JY, Kim PS et al. Shimia haliotis sp. nov., a bacterium isolated from the gut of an abalone, Haliotis discus hannai. Int J Syst Evol Microbiol 2013; 63: 4248– 4253 [CrossRef] [PubMed]
    [Google Scholar]
  87. Nogi Y, Mori K, Uchida H, Hatada Y. Shimia sagamensis sp. nov., a marine bacterium isolated from cold-seep sediment. Int J Syst Evol Microbiol 2015; 65: 2786– 2790 [CrossRef] [PubMed]
    [Google Scholar]
  88. Chen MH, Sheu SY, Chen CA, Wang JT, Chen WM. Shimia isoporae sp. nov., isolated from the reef-building coral Isopora palifera. Int J Syst Evol Microbiol 2011; 61: 823– 827 [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002833
Loading
/content/journal/ijsem/10.1099/ijsem.0.002833
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error