1887

Abstract

A polyphasic study was undertaken to establish the taxonomic status of a Blastococcus strain isolated from an extreme hyper-arid Atacama Desert soil. The isolate, strain P6, was found to have chemotaxonomic and morphological properties consistent with its classification in the genus Blastococcus . It was shown to form a well-supported branch in the Blastococcus 16S rRNA gene tree together with the type strains of Blastococcus capsensis and Blastococcus saxobsidens and was distinguished from the latter, its close phylogenetic neighbour, by a broad range of phenotypic properties. The draft genome sequence of isolate P6 showed 84.6 % average nucleotide identity, 83.0 % average amino acid identity and a digital DNA–DNA hybridisation value of 27.8 % in comparison with the genome sequence of B. saxobsidens DSM 44509, values consistent with its assignment to a separate species. Based on these data it is proposed that isolate P6 (NCIMB 15090=NRRL B-65468) be assigned to the genus Blastococcus as Blastococcus atacamensis sp. nov. Analysis of the whole genome sequence of B. atacamensis P6, with 3778 open reading frames and a genome size of 3.9 Mb showed the presence of genes and gene clusters that encode for properties that reflect its adaptation to the extreme environmental conditions that prevail in Atacama Desert soils.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002828
2018-07-03
2019-12-11
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/9/2712.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002828&mimeType=html&fmt=ahah

References

  1. Ahrens R, Moll G. Ein neues knospendes Bakterium aus der Ostsee. Archiv für Mikrobiologie 1970;70:243–265 [CrossRef]
    [Google Scholar]
  2. Urzì C, Brusetti L, Salamone P, Sorlini C, Stackebrandt E et al. Biodiversity of Geodermatophilaceae isolated from altered stones and monuments in the Mediterranean basin. Environ Microbiol 2001;3:471–479 [CrossRef][PubMed]
    [Google Scholar]
  3. Lee SD. Blastococcus jejuensis sp. nov., an actinomycete from beach sediment, and emended description of the genus Blastococcus Ahrens and Moll 1970. Int J Syst Evol Microbiol 2006;56:2391–2396 [CrossRef][PubMed]
    [Google Scholar]
  4. Hezbri K, Louati M, Nouioui I, Gtari M, Rohde M et al. Blastococcus capsensis sp. nov., isolated from an archaeological Roman pool and emended description of the genus Blastococcus, B. aggregatus, B. saxobsidens, B. jejuensis and B. endophyticus. Int J Syst Evol Microbiol 2016;66:4864–4872 [CrossRef][PubMed]
    [Google Scholar]
  5. Huang J, Li J, Cao M, Liao S, Wang G. Cumulibacter manganitolerans gen. nov., sp. nov., isolated from sludge of a manganese mine. Int J Syst Evol Microbiol 2017;67:2646–2652 [CrossRef][PubMed]
    [Google Scholar]
  6. Luedemann GM. Geodermatophilus, a new genus of the Dermatophilaceae (Actinomycetales). J Bacteriol 1968;96:1848–1858[PubMed]
    [Google Scholar]
  7. Montero-Calasanz MDC, Meier-Kolthoff JP, Zhang DF, Yaramis A, Rohde M et al. Genome-scale data call for a taxonomic rearrangement of Geodermatophilaceae. Front Microbiol 2017;8:2501 [CrossRef][PubMed]
    [Google Scholar]
  8. Mevs U, Stackebrandt E, Schumann P, Gallikowski CA, Hirsch P. Modestobacter multiseptatus gen. nov., sp. nov., a budding actinomycete from soils of the Asgard Range (Transantarctic mountains). Int J Syst Evol Microbiol 2000;50:337–346 [CrossRef][PubMed]
    [Google Scholar]
  9. Normand P. Geodermatophilaceae fam. nov., a formal description. Int J Syst Evol Microbiol 2006;56:2277–2278 [CrossRef][PubMed]
    [Google Scholar]
  10. Normand P, Daffonchio D, Gtari M. The family Geodermatophilaceae. In Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F et al. (editors) The Prokaryotes: Actinobacteria Berlin: Springer; 2014; pp.361–379
    [Google Scholar]
  11. Sen A, Daubin V, Abrouk D, Gifford I, Berry AM et al. Phylogeny of the class Actinobacteria revisited in the light of complete genomes. The orders 'Frankiales' and Micrococcales should be split into coherent entities: proposal of Frankiales ord. nov., Geodermatophilales ord. nov., Acidothermales ord. nov. and Nakamurellales ord. nov. Int J Syst Evol Microbiol 2014;64:3821–3832 [CrossRef][PubMed]
    [Google Scholar]
  12. Chouaia B, Crotti E, Brusetti L, Daffonchio D, Essoussi I et al. Genome sequence of Blastococcus saxobsidens DD2, a stone-inhabiting bacterium. J Bacteriol 2012;194:2752–2753 [CrossRef][PubMed]
    [Google Scholar]
  13. Normand P, Benson DR. Family IV. Geodermatophilaceae Normand 2006, 2277VP (Effective publication: Normand, Orso, Cournoyer, Jeannin, Chapelon, Dawson, Evtushenkoand Misra 1996, 8.). In Goodfellow M, Kämpfer P, Busse H-J, Trujillo ME, Suzuki KI et al. (editors) Bergey’s Manual of Systematic Bacteriology: The Actinobacteria, Part A New York, NY: Springer; 2012; p.528
    [Google Scholar]
  14. Gtari M, Essoussi I, Maaoui R, Sghaier H, Boujmil R et al. Contrasted resistance of stone-dwelling Geodermatophilaceae species to stresses known to give rise to reactive oxygen species. FEMS Microbiol Ecol 2012;80:566–577 [CrossRef][PubMed]
    [Google Scholar]
  15. Eppard M, Krumbein WE, Koch C, Rhiel E, Staley JT et al. Morphological, physiological, and molecular characterization of actinomycetes isolated from dry soil, rocks, and monument surfaces. Arch Microbiol 1996;166:12–22 [CrossRef][PubMed]
    [Google Scholar]
  16. Nie GX, Ming H, Li S, Zhou EM, Cheng J et al. Geodermatophilus nigrescens sp. nov., isolated from a dry-hot valley. Antonie van Leeuwenhoek 2012;101:811–817 [CrossRef][PubMed]
    [Google Scholar]
  17. Zhu WY, Zhang JL, Qin YL, Xiong ZJ, Zhang DF et al. Blastococcus endophyticus sp. nov., an actinobacterium isolated from Camptotheca acuminata. Int J Syst Evol Microbiol 2013;63:3269–3273 [CrossRef][PubMed]
    [Google Scholar]
  18. Stackebrandt E, Schumann P. Genus II. Blastococcus. In Goodfellow M, Kämpfer P, Busse HJ, Trujillo ME, Suzuki KI et al. (editors) Bergeys Manual of Systematic Bacteriology (The Actinobacteria, Part A New York: Springer; 2012; pp.531–536
    [Google Scholar]
  19. Urzì C, Salamone P, Schumann P, Rohde M, Stackebrandt E. Blastococcus saxobsidens sp. nov., and emended descriptions of the genus Blastococcus Ahrens and Moll 1970 and Blastococcus aggregatus Ahrens and Moll 1970. Int J Syst Evol Microbiol 2004;54:253–259 [CrossRef][PubMed]
    [Google Scholar]
  20. Hezbri K, Nouioui I, Rohde M, Schumann P, Gtari M et al. Blastococcus colisei sp. nov, isolated from an archaeological amphitheatre. Antonie van Leeuwenhoek 2017;110:339–346 [CrossRef][PubMed]
    [Google Scholar]
  21. Pfleiderer A, Lagier JC, Armougom F, Robert C, Vialettes B et al. Culturomics identified 11 new bacterial species from a single anorexia nervosa stool sample. Eur J Clin Microbiol Infect Dis 2013;32:1471–1481 [CrossRef][PubMed]
    [Google Scholar]
  22. Atlas RM. Handbook of Microbiological Media, 4th ed. Boca Raton, FL: CRC Press; 2010
    [Google Scholar]
  23. Vickers JC, Williams ST. An assessment of plate inoculation procedures for the enumeration and isolation of soil streptomycetes. Microbios Letters 1987;35:113–117
    [Google Scholar]
  24. Trujillo ME, Goodfellow M, Busarakam K, Riesco R. Modestobacter lapidis sp. nov. and Modestobacter muralis sp. nov., isolated from a deteriorated sandstone historic building in Salamanca, Spain. Antonie van Leeuwenhoek 2015;108:311–320 [CrossRef][PubMed]
    [Google Scholar]
  25. Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol 1966;16:313–340 [CrossRef]
    [Google Scholar]
  26. Staneck JL, Roberts GD. Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 1974;28:226–231[PubMed]
    [Google Scholar]
  27. Collins MD, Goodfellow M, Minnikin DE, Alderson G. Menaquinone composition of mycolic acid-containing actinomycetes and some sporoactinomycetes. J Appl Bacteriol 1985;58:77–86 [CrossRef][PubMed]
    [Google Scholar]
  28. Lechevalier MP, Lechevalier H. Chemical composition as a criterion in the classification of aerobic actinomycetes. Int J Syst Bacteriol 1970;20:435–443 [CrossRef]
    [Google Scholar]
  29. Minnikin DE, Patel PV, Alshamaony L, Goodfellow M. Polar lipid composition in the classification of Nocardia and related bacteria. Int J Syst Bacteriol 1977;27:104–117 [CrossRef]
    [Google Scholar]
  30. Kroppenstedt R, Goodfellow M. The family Thermomonosporaceae: Actinocorallia, Actinomadura, Spirillispora and Thermomonospora. In Dworkin M, Falkow S, Schleifer KH, Stackebrandt E. (editors) The Prokaryotes, Archaea and Bacteria Firmicutes, Actinomycetes New York: Springer; 2006; pp.682–724
    [Google Scholar]
  31. Carro L, Riesco R, Spröer C, Trujillo ME. Micromonospora luteifusca sp. nov. isolated from cultivated Pisum sativum. Syst Appl Microbiol 2016;39:237–242 [CrossRef][PubMed]
    [Google Scholar]
  32. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  33. Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA et al. Practical Streptomyces Genetics Norwich, UK: John Innes Foundation; 2000
    [Google Scholar]
  34. Lane DJ. 16S/23S rRNA sequencing. In Stackebrandt E, Goodfellow M. (editors) Nucleic Acid Techniques in Bacterial Systematics New York: John Wiley & Sons; 1991; pp.115–175
    [Google Scholar]
  35. Staden R, Beal KF, Bonfield JK. The Staden package, 1998. Methods Mol Biol 2000;132:115–130[PubMed]
    [Google Scholar]
  36. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67:1613–1617 [CrossRef][PubMed]
    [Google Scholar]
  37. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004;32:1792–1797 [CrossRef][PubMed]
    [Google Scholar]
  38. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33:1870–1874 [CrossRef][PubMed]
    [Google Scholar]
  39. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425 [CrossRef][PubMed]
    [Google Scholar]
  40. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  41. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971;20:406–416 [CrossRef]
    [Google Scholar]
  42. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39:783–791 [CrossRef][PubMed]
    [Google Scholar]
  43. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980;16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  44. Meier-Kolthoff JP, Göker M, Spröer C, Klenk HP. When should a DDH experiment be mandatory in microbial taxonomy?. Arch Microbiol 2013;195:413–418 [CrossRef][PubMed]
    [Google Scholar]
  45. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013;14:60 [CrossRef][PubMed]
    [Google Scholar]
  46. Vaas LA, Sikorski J, Hofner B, Fiebig A, Buddruhs N et al. opm: an R package for analysing OmniLog® phenotype microarray data. Bioinformatics 2013;29:1823–1824 [CrossRef][PubMed]
    [Google Scholar]
  47. R Core Team 2016; R: a language and environment for statistical computing version 3.3.1. R Foundation for Statistical Computing, Vienna, Austriawww.r-project.org/
  48. RStudio Team 2015; Rstudio: Integrated Development for R Version 0.99.903 Boston, MA: RStudio, Inc;www.rstudio.com/
    [Google Scholar]
  49. Montero-Calasanz MDC, Hofner B, Göker M, Rohde M, Spröer C et al. Geodermatophilus poikilotrophi sp. nov.: a multitolerant actinomycete isolated from dolomitic marble. Biomed Res Int 2014;2014:1–11 [CrossRef][PubMed]
    [Google Scholar]
  50. Williams ST, Goodfellow M, Alderson G, Wellington EM, Sneath PH et al. Numerical classification of Streptomyces and related genera. J Gen Microbiol 1983;129:1743–1813 [CrossRef][PubMed]
    [Google Scholar]
  51. Christensen WB. Urea decomposition as a means of differentiating proteus and paracolon cultures from each other and from Salmonella and Shigella types. J Bacteriol 1946;52:461–466[PubMed]
    [Google Scholar]
  52. Schaal KP, Yassin AF, Stackebrandt E. The family Actinomycetaceae: the genera Actinomyces, Actinobaculum, Arcanobacterium, Varibaculum, and Mobiluncus. In Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E et al. (editors) The Prokaryotes – A Handbook on the Biology of Bacteria: Archaea Bacteria: Firmicutes, Actinomycetes New York: Springer; 2006; pp.430–537
    [Google Scholar]
  53. Kovacs N. Identification of Pseudomonas pyocyanea by the oxidase reaction. Nature 1956;178:703 [CrossRef][PubMed]
    [Google Scholar]
  54. Murray PR. Manual of Clinical Microbiology Washington, DC: ASM Press; 1999
    [Google Scholar]
  55. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012;19:455–477 [CrossRef][PubMed]
    [Google Scholar]
  56. Aziz RK, Bartels D, Best AA, Dejongh M, Disz T et al. The RAST Server: rapid annotations using subsystems technology. BMC Genomics 2008;9:75 [CrossRef][PubMed]
    [Google Scholar]
  57. Aziz RK, Devoid S, Disz T, Edwards RA, Henry CS et al. SEED servers: high-performance access to the SEED genomes, annotations, and metabolic models. PLoS One 2012;7:e48053 [CrossRef][PubMed]
    [Google Scholar]
  58. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007;57:81–91 [CrossRef][PubMed]
    [Google Scholar]
  59. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987;37:463–464 [CrossRef]
    [Google Scholar]
  60. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009;106:19126–19131 [CrossRef][PubMed]
    [Google Scholar]
  61. Chun J, Rainey FA. Integrating genomics into the taxonomy and systematics of the Bacteria and Archaea. Int J Syst Evol Microbiol 2014;64:316–324 [CrossRef][PubMed]
    [Google Scholar]
  62. Weber T, Blin K, Duddela S, Krug D, Kim HU et al. antiSMASH 3.0-a comprehensive resource for the genome mining of biosynthetic gene clusters. Nucleic Acids Res 2015;43:W237–W243 [CrossRef][PubMed]
    [Google Scholar]
  63. Funa N, Ohnishi Y, Fujii I, Shibuya M, Ebizuka Y et al. A new pathway for polyketide synthesis in microorganisms. Nature 1999;400:897–899 [CrossRef][PubMed]
    [Google Scholar]
  64. Yu D, Xu F, Zeng J, Zhan J. Type III polyketide synthases in natural product biosynthesis. IUBMB Life 2012;64:285–295 [CrossRef][PubMed]
    [Google Scholar]
  65. The UniProt Consortium UniProt: the universal protein knowledgebase. Nucleic Acids Res 2017;45:D158–D169 [CrossRef][PubMed]
    [Google Scholar]
  66. Sandmann G. Carotenoid biosynthesis and biotechnological application. Arch Biochem Biophys 2001;385:4–12 [CrossRef][PubMed]
    [Google Scholar]
  67. Klassen JL. Phylogenetic and evolutionary patterns in microbial carotenoid biosynthesis are revealed by comparative genomics. PLoS One 2010;5:e11257 [CrossRef][PubMed]
    [Google Scholar]
  68. Finn RD, Coggill P, Eberhardt RY, Eddy SR, Mistry J et al. The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res 2016;44:D279–D285 [CrossRef][PubMed]
    [Google Scholar]
  69. Barona-Gómez F, Wong U, Giannakopulos AE, Derrick PJ, Challis GL. Identification of a cluster of genes that directs desferrioxamine biosynthesis in Streptomyces coelicolor M145. J Am Chem Soc 2004;126:16282–16283 [CrossRef][PubMed]
    [Google Scholar]
  70. Busarakam K, Bull AT, Trujillo ME, Riesco R, Sangal V et al. Modestobacter caceresii sp. nov., novel actinobacteria with an insight into their adaptive mechanisms for survival in extreme hyper-arid Atacama Desert soils. Syst Appl Microbiol 2016;39:243–251 [CrossRef][PubMed]
    [Google Scholar]
  71. Gomez-Escribano JP, Castro JF, Razmilic V, Chandra G, Andrews B et al. The Streptomyces leeuwenhoekii genome: de novo sequencing and assembly in single contigs of the chromosome, circular plasmid pSLE1 and linear plasmid pSLE2. BMC Genomics 2015;16:485 [CrossRef][PubMed]
    [Google Scholar]
  72. Anantharaman V, Iyer LM, Aravind L. Ter-dependent stress response systems: novel pathways related to metal sensing, production of a nucleoside-like metabolite, and DNA-processing. Mol Biosyst 2012;8:3142–3165 [CrossRef][PubMed]
    [Google Scholar]
  73. Schultz JE, Matin A. Molecular and functional characterization of a carbon starvation gene of Escherichia coli. J Mol Biol 1991;218:129–140 [CrossRef][PubMed]
    [Google Scholar]
  74. Lucchetti-Miganeh C, Burrowes E, Baysse C, Ermel G. The post-transcriptional regulator CsrA plays a central role in the adaptation of bacterial pathogens to different stages of infection in animal hosts. Microbiology 2008;154:16–29 [CrossRef][PubMed]
    [Google Scholar]
  75. Rasmussen JJ, Vegge CS, Frøkiær H, Howlett RM, Krogfelt KA et al. Campylobacter jejuni carbon starvation protein A (CstA) is involved in peptide utilization, motility and agglutination, and has a role in stimulation of dendritic cells. J Med Microbiol 2013;62:1135–1143 [CrossRef][PubMed]
    [Google Scholar]
  76. Essoussi I, Ghodhbane-Gtari F, Amairi H, Sghaier H, Jaouani A et al. Esterase as an enzymatic signature of Geodermatophilaceae adaptability to Sahara desert stones and monuments. J Appl Microbiol 2010;108:1723–1732 [CrossRef][PubMed]
    [Google Scholar]
  77. Li JS, Bi YT, Dong C, Yang JF, Liang WD. Transcriptome analysis of adaptive heat shock response of Streptococcus thermophilus. PLoS One 2011;6:e25777 [CrossRef][PubMed]
    [Google Scholar]
  78. Reina-Bueno M, Argandoña M, Nieto JJ, Hidalgo-García A, Iglesias-Guerra F et al. Role of trehalose in heat and desiccation tolerance in the soil bacterium Rhizobium etli. BMC Microbiol 2012;12:207 [CrossRef][PubMed]
    [Google Scholar]
  79. Normand P, Gury J, Pujic P, Chouaia B, Crotti E et al. Genome sequence of radiation-resistant Modestobacter marinus strain BC501, a representative actinobacterium that thrives on calcareous stone surfaces. J Bacteriol 2012;194:4773–4774 [CrossRef][PubMed]
    [Google Scholar]
  80. Manthei KA, Hill MC, Burke JE, Butcher SE, Keck JL. Structural mechanisms of DNA binding and unwinding in bacterial RecQ helicases. Proc Natl Acad Sci USA 2015;112:4292–4297 [CrossRef][PubMed]
    [Google Scholar]
  81. Lorite MJ, Tachil J, Sanjuán J, Meyer O, Bedmar EJ. Carbon monoxide dehydrogenase activity in Bradyrhizobium japonicum. Appl Environ Microbiol 2000;66:1871–1876 [CrossRef][PubMed]
    [Google Scholar]
  82. Boncompagni E, Dupont L, Mignot T, Osteräs M, Lambert A et al. Characterization of a Snorhizobium meliloti ATP-binding cassette histidine transporter also involved in betaine and proline uptake. J Bacteriol 2000;182:3717–3725 [CrossRef][PubMed]
    [Google Scholar]
  83. Nau-Wagner G, Opper D, Rolbetzki A, Boch J, Kempf B et al. Genetic control of osmoadaptive glycine betaine synthesis in Bacillus subtilis through the choline-sensing and glycine betaine-responsive GbsR repressor. J Bacteriol 2012;194:2703–2714 [CrossRef][PubMed]
    [Google Scholar]
  84. Kappes RM, Kempf B, Kneip S, Boch J, Gade J et al. Two evolutionarily closely related ABC transporters mediate the uptake of choline for synthesis of the osmoprotectant glycine betaine in Bacillus subtilis. Mol Microbiol 1999;32:203–216 [CrossRef][PubMed]
    [Google Scholar]
  85. Mandon K, Osterås M, Boncompagni E, Trinchant JC, Spennato G et al. The Sinorhizobium meliloti glycine betaine biosynthetic genes (betlCBA) are induced by choline and highly expressed in bacteroids. Mol Plant Microbe Interact 2003;16:709–719 [CrossRef][PubMed]
    [Google Scholar]
  86. Bull AT, Asenjo JA, Goodfellow M, Gómez-Silva B. The Atacama Desert: technical resources and the growing importance of novel microbial diversity. Annu Rev Microbiol 2016;70:215–234 [CrossRef][PubMed]
    [Google Scholar]
  87. Idris H, Goodfellow M, Sanderson R, Asenjo JA, Bull AT. Actinobacterial rare biospheres and dark matter revealed in habitats of the Chilean Atacama Desert. Sci Rep 2017;7:8373 [CrossRef][PubMed]
    [Google Scholar]
  88. Costello EK, Halloy SR, Reed SC, Sowell P, Schmidt SK. Fumarole-supported islands of biodiversity within a hyperarid, high-elevation landscape on Socompa Volcano, Puna de Atacama, Andes. Appl Environ Microbiol 2009;75:735–747 [CrossRef][PubMed]
    [Google Scholar]
  89. Lynch RC, King AJ, Farías ME, Sowell P, Vitry C et al. The potential for microbial life in the highest-elevation (>6000 m.a.s.l.) mineral soils of the Atacama region. J Geophys Res Biogeosci 2012;117:G02028
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002828
Loading
/content/journal/ijsem/10.1099/ijsem.0.002828
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error