1887

Abstract

Strain S12-2-1 was isolated from a soil sample collected in the Gyeongsangnam-do province of the Republic of Korea. The isolate is a Gram-stain-negative, aerobic, short, rod-shaped bacterium, and its colonies are red to pink in colour. Analysis of the 16S rRNA gene identified strain S12-2-1 as a member of the genus Hymenobacter in the family Cytophagaceae , with high levels of 16S rRNA gene sequence similarity to Hymenobacter arizonensis OR362-8 (97.7 %), Hymenobacter sedentarius DG5B (97.4 %) and Hymenobacter humi DG31A (97.2 %). The isolate was positive for catalase and oxidase, but negative for acid production from glucose. The growth of strain S12-2-1 was supported at 4–30 °C, pH 7–10 and in the presence of 0–0.5 % NaCl. Strain S12-2-1 contained menaquinone-7 as the predominant respiratory quinone, sym-homospermidine as the major polyamine and iso-C15 : 0, anteiso-C15 : 0 and summed feature 3 (C16 : 1ω7c/C16 : 1ω6c) as the major fatty acids. Phosphatidylethanolamine was the major polar lipid. The genomic DNA G+C content was 58.7 mol%. Phenotypic and chemotaxonomic data supported the assignment of the isolate to the genus Hymenobacter . However, strain S12-2-1 exhibited a relatively low level of DNA–DNA relatedness with H. humi (31.7 %), H. arizonensis (24.4 %) and H. sedentarius (21.3 %). Based on its phenotypic and genotypic properties, along with its phylogenetic distinctiveness, strain S12-2-1 should be considered a novel species in the genus Hymenobacter , for which the name Hymenobacter pedocola sp. nov. is proposed. The type strain is S12-2-1 (=KCTC 52730=JCM 32198).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002818
2018-05-16
2019-10-16
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/7/2242.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002818&mimeType=html&fmt=ahah

References

  1. Hirsch P, Ludwig W, Hethke C, Sittig M, Hoffmann B et al. Hymenobacter roseosalivarius gen. nov., sp. nov. from continental Antartica soils and sandstone: bacteria of the Cytophaga/Flavobacterium/Bacteroides line of phylogenetic descent. Syst Appl Microbiol 1998; 21: 374– 383 [CrossRef] [PubMed]
    [Google Scholar]
  2. Buczolits S, Denner EB, Kämpfer P, Busse HJ. Proposal of Hymenobacter norwichensis sp. nov., classification of 'Taxeobacter ocellatus', 'Taxeobacter gelupurpurascens' and 'Taxeobacter chitinovorans' as Hymenobacter ocellatus sp. nov., Hymenobacter gelipurpurascens sp. nov. and Hymenobacter chitinivorans sp. nov., respectively, and emended description of the genus Hymenobacter Hirsch et al. 1999. Int J Syst Evol Microbiol 2006; 56: 2071– 2078 [CrossRef] [PubMed]
    [Google Scholar]
  3. Reddy GS. Phylogenetic analyses of the genus Hymenobacter and description of Siccationidurans gen. nov., and Parahymenobacter gen. nov. J Phylogenetics Evol Biol 2013; 1: 122 [CrossRef]
    [Google Scholar]
  4. Zhu HZ, Yang L, Muhadesi JB, Wang BJ, Liu SJ. Hymenobacter cavernae sp. nov., isolated from a karst cave. Int J Syst Evol Microbiol 2017; 67: 4825– 4829 [CrossRef] [PubMed]
    [Google Scholar]
  5. Kang JW, Choi S, Choe HN, Seong CN. Hymenobacter defluvii sp. nov., isolated from wastewater of an acidic water neutralization facility. Int J Syst Evol Microbiol 2018; 68: 277– 282 [CrossRef] [PubMed]
    [Google Scholar]
  6. Gu Z, Liu Y, Xu B, Wang N, Jiao N et al. Hymenobacter frigidus sp. nov., isolated from a glacier ice core. Int J Syst Evol Microbiol 2017; 67: 4121– 4125 [CrossRef] [PubMed]
    [Google Scholar]
  7. Chen WM, Chen WT, Young CC, Sheu SY. Hymenobacter gummosus sp. nov., isolated from a spring. Int J Syst Evol Microbiol 2017; 67: 4728– 4735 [CrossRef] [PubMed]
    [Google Scholar]
  8. Jiang F, Danzeng W, Zhang Y, Zhang Y, Jiang L et al. Hymenobacter rubripertinctus sp. nov., isolated from Antarctic tundra soil. Int J Syst Evol Microbiol 2018; 68: 663– 668 [CrossRef] [PubMed]
    [Google Scholar]
  9. Ten LN, Lee JJ, Lee YH, Park SJ, Lee SY et al. Hymenobacter knuensis sp. nov., Isolated From River Water. Curr Microbiol 2017; 74: 515– 521 [CrossRef] [PubMed]
    [Google Scholar]
  10. Ten LN, Lee YH, Lee JJ, Park SJ, Lee SY et al. Hymenobacter daeguensis sp. nov. isolated from river water. J Microbiol 2017; 55: 253– 259 [CrossRef] [PubMed]
    [Google Scholar]
  11. Lee JJ, Park SJ, Lee YH, Lee SY, Ten LN et al. Hymenobacter aquaticus sp. nov., a radiation-resistant bacterium isolated from a river. Int J Syst Evol Microbiol 2017; 67: 1206– 1211 [CrossRef] [PubMed]
    [Google Scholar]
  12. Buczolits S, Busse HJ. Hymenobacter. In Whitman WB. (editor) Bergey’s Manual of Systematics of Archaea and Bacteria John Wiley & Sons, Inc; 2015; pp. 1– 11
    [Google Scholar]
  13. Lee JJ, Kang MS, Joo ES, Jung HY, Kim MK. Hymenobacter sedentarius sp. nov., isolated from a soil. J Microbiol 2016; 54: 283– 289 [CrossRef] [PubMed]
    [Google Scholar]
  14. Chung AP, Lopes A, Nobre MF, Morais PV. Hymenobacter perfusus sp. nov., Hymenobacter flocculans sp. nov. and Hymenobacter metalli sp. nov. three new species isolated from an uranium mine waste water treatment system. Syst Appl Microbiol 2010; 33: 436– 443 [CrossRef] [PubMed]
    [Google Scholar]
  15. Kim MC, Kim CM, Kang OC, Zhang Y, Liu Z et al. Hymenobacter rutilus sp. nov., isolated from marine sediment in the Arctic. Int J Syst Evol Microbiol 2017; 67: 856– 861 [CrossRef] [PubMed]
    [Google Scholar]
  16. Sedláček I, Králová S, Kýrová K, Mašlaňová I, Busse HJ et al. Red-pink pigmented Hymenobacter coccineus sp. nov., Hymenobacter lapidarius sp. nov. and Hymenobacter glacialis sp. nov., isolated from rocks in Antarctica. Int J Syst Evol Microbiol 2017; 67: 1975– 1983 [CrossRef] [PubMed]
    [Google Scholar]
  17. Reddy GS, Garcia-Pichel F. Description of Hymenobacter arizonensis sp. nov. from the southwestern arid lands of the United States of America. Antonie van Leeuwenhoek 2013; 103: 321– 330 [CrossRef] [PubMed]
    [Google Scholar]
  18. Sheu SY, Li YS, Young CC, Chen WM. Hymenobacter pallidus sp. nov., isolated from a freshwater fish culture pond. Int J Syst Evol Microbiol 2017; 67: 2915– 2921 [CrossRef] [PubMed]
    [Google Scholar]
  19. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991; 173: 697– 703 [CrossRef] [PubMed]
    [Google Scholar]
  20. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67: 1613– 1617 [CrossRef] [PubMed]
    [Google Scholar]
  21. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 1999; 41: 95– 98
    [Google Scholar]
  22. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25: 4876– 4882 [CrossRef] [PubMed]
    [Google Scholar]
  23. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4: 406– 425 [CrossRef] [PubMed]
    [Google Scholar]
  24. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17: 368– 376 [CrossRef] [PubMed]
    [Google Scholar]
  25. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20: 406– 416 [CrossRef]
    [Google Scholar]
  26. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33: 1870– 1874 [CrossRef] [PubMed]
    [Google Scholar]
  27. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39: 783– 791 [CrossRef] [PubMed]
    [Google Scholar]
  28. Srinivasan S, Joo ES, Lee JJ, Kim MK. Hymenobacter humi sp. nov., a bacterium isolated from soil. Antonie van Leeuwenhoek 2015; 107: 1411– 1419 [CrossRef] [PubMed]
    [Google Scholar]
  29. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987; 37: 463– 464 [CrossRef]
    [Google Scholar]
  30. Stackebrandt E, Goebel BM. Taxonomic Note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 1994; 44: 846– 849 [CrossRef]
    [Google Scholar]
  31. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994; pp. 607– 654
    [Google Scholar]
  32. Cappuccino JG, Sherman N. Microbiology: A Laboratory Manual, 9th ed. San Francisco, USA: Benjamin Cummings; 2010
    [Google Scholar]
  33. Ten LN, Baek SH, Im WT, Lee M, Oh HW et al. Paenibacillus panacisoli sp. nov., a xylanolytic bacterium isolated from soil in a ginseng field in South Korea. Int J Syst Evol Microbiol 2006; 56: 2677– 2681 [CrossRef] [PubMed]
    [Google Scholar]
  34. Wilson K. Preparation of genomic DNA from bacteria. In Ausubel FM. (editor) Current Protocols in Molecular Biology New York, NY: Jonh Wiley & Sons, Inc; 1997; pp. 2.4.1– 2.4.2
    [Google Scholar]
  35. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989; 39: 159– 167 [CrossRef]
    [Google Scholar]
  36. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Netwark, DE: MIDI Inc; 1990
    [Google Scholar]
  37. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2: 233– 241 [CrossRef]
    [Google Scholar]
  38. Komagata K, Suzuki KI. Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 1987; 19: 161– 205 [Crossref]
    [Google Scholar]
  39. Yoon MH, Ten LN, Im WT. Cohnella panacarvi sp. nov., a xylanolytic bacterium isolated from ginseng cultivating soil. J Microbiol Biotechnol 2007; 17: 913– 918 [PubMed]
    [Google Scholar]
  40. Hiraishi A, Ueda Y, Ishihara J, Mori T. Comparative lipoquinone analysis of influent sewage and activated sludge by high-performance liquid chromatography and photodiode array detection. J Gen Appl Microbiol 1996; 42: 457– 469 [CrossRef]
    [Google Scholar]
  41. Busse H-J, Bunka S, Hensel A, Lubitz W. Discrimination of members of the family Pasteurellaceae based on polyamine patterns. Int J Syst Bacteriol 1997; 47: 698– 708 [CrossRef]
    [Google Scholar]
  42. Klassen JL, Foght JM. Differences in carotenoid composition among hymenobacter and related strains support a tree-like model of carotenoid evolution. Appl Environ Microbiol 2008; 74: 2016– 2022 [CrossRef] [PubMed]
    [Google Scholar]
  43. Bernardet JF, Nakagawa Y, Holmes B. Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 2002; 52: 1049– 1070 [CrossRef] [PubMed]
    [Google Scholar]
  44. Ezaki T, Hashimoto Y, Yabuuchi E. Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 1989; 39: 224– 229 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002818
Loading
/content/journal/ijsem/10.1099/ijsem.0.002818
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error