1887

Abstract

is the type genus of the in the of the , comprising nine species of sulfur-oxidising filamentous bacteria, which are variously autotrophic, heterotrophic or have mixed metabolic modes. Within the genus, four species show 16S rRNA gene identities lower the Yarza threshold for the rank of genus (94.5 %) – , , and – as they show no affiliation to extant genera, a polyphasic study was undertaken including biochemical, physiological and genomic properties and phylogeny based on the 16S rRNA gene (), recombination protein A (RecA), polynucleotide nucleotidyltransferase (Pnp), translation initiation factor IF-2 (InfB), glyceraldehyde-3-phosphate dehydrogenase (GapA), glutaminyl-tRNA synthetase (GlnS), elongation factor EF-G (FusA) and concatamers of 53 ribosomal proteins encoded by , and operons, all of which support the reclassification of these species. We thus propose gen. nov. and gen. nov. for which the type species are gen. nov., comb. nov. and gen. nov., comb. nov. We also propose that these genera are each circumscribed into novel families fam. nov. and fam. nov., and that and are circumscribed into fam. nov. and provide emended descriptions of and .

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002816
2018-07-01
2020-01-22
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/7/2226.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002816&mimeType=html&fmt=ahah

References

  1. Rabenhorst. Flora Europaea Algarum aquae dulcis et submarinae, Section II Leipzig: E. Kummer; 1865; pp.1–319
    [Google Scholar]
  2. Winogradsky S. Beiträge Zur Morphologie Und Physiologie Der Bacterien. Heft I. Zur morphologie Und Physiologie Der Schwefelbacterien Leipzig: Arthur Felix; 1888; pp.1–120
    [Google Scholar]
  3. Aruga S, Kamagata Y, Kohno T, Hanada S, Nakamura K et al. Characterization of filamentous Eikelboom type 021N bacteria and description of Thiothrix disciformis sp. nov. and Thiothrix flexilis sp. nov. Int J Syst Evol Microbiol 2002;52:1309–1316 [CrossRef][PubMed]
    [Google Scholar]
  4. Buchanon RE, Holt JG, Lessel EF. Index Bergeyana – An Annotated Alphabetic Listing of the Names of the Taxa of the Bacteria Edinburgh: E & S Livingstone Ltd; 1996; pp.p. 1154
    [Google Scholar]
  5. Gibbons NE, Pattee KB, Holt JG. Supplement to Index Bergeyana London: Williams & Wilkins; 1981; pp.pp.–294
    [Google Scholar]
  6. Chernousova EYu, Belousova EV, Gavrish EYu, Dubinina GA, Tourova TP et al. Molecular phylogeny and taxonomy of colourless, filamentous sulfur bacteria of the genus Thiothrix. Microbiology (Russia) 2012;81:332–341
    [Google Scholar]
  7. Larkin JM, Shinabarger DL. Characterization of Thiothrix nivea. Int J Syst Bacteriol 1983;33:841–846
    [Google Scholar]
  8. Chernousova E, Gridneva E, Grabovich M, Dubinina G, Akimov V et al. Thiothrix caldifontis sp. nov. and Thiothrix lacustris sp. nov., gammaproteobacteria isolated from sulfide springs. Int J Syst Evol Microbiol 2009;59:3128–3135 [CrossRef][PubMed]
    [Google Scholar]
  9. Howarth R, Unz RF, Seviour EM, Seviour RJ, Blackall LL et al. Phylogenetic relationships of filamentous sulfur bacteria (Thiothrix spp. and Eikelboom type 021N bacteria) isolated from wastewater-treatment plants and description of Thiothrix eikelboomii sp. nov., Thiothrix unzii sp. nov., Thiothrix fructosivorans sp. nov. and Thiothrix defluvii sp. nov. Int J Syst Bacteriol 1999;49:1817–1827 [CrossRef][PubMed]
    [Google Scholar]
  10. Dattagupta S, Schaperdoth I, Montanari A, Mariani S, Kita N et al. A novel symbiosis between chemoautotrophic bacteria and a freshwater cave amphipod. Isme J 2009;3:935–943 [CrossRef][PubMed]
    [Google Scholar]
  11. Gillan DC, Dubilier N. Novel epibiotic Thiothrix bacterium on a marine amphipod. Appl Environ Microbiol 2004;70:3772–3775 [CrossRef][PubMed]
    [Google Scholar]
  12. Lackey JB, Lackey WW, Morgan GB. Taxonomy and ecology of the sulfur bacteria. Eng Prog Univ Fla Bull Ser 1965;19:3–23
    [Google Scholar]
  13. Larkin JM, Henk MC, Burton SD. Occurrence of a Thiothrix sp. attached to mayfly larvae and presence of parasitic bacteria in the Thiothrix sp. Appl Environ Microbiol 1990;56:357–361[PubMed]
    [Google Scholar]
  14. Dubinina G, Savvichev A, Orlova M, Gavrish E, Verbarg S et al. Beggiatoa leptomitoformis sp. nov., the first freshwater member of the genus capable of chemolithoautotrophic growth. Int J Syst Evol Microbiol 2017;67:197–204 [CrossRef][PubMed]
    [Google Scholar]
  15. Yarza P, Yilmaz P, Pruesse E, Glöckner FO, Ludwig W et al. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol 2014;12:635–645 [CrossRef][PubMed]
    [Google Scholar]
  16. Boden R, Hutt LP, Rae AW. Reclassification of Thiobacillus aquaesulis (Wood & Kelly, 1995) as Annwoodia aquaesulis gen. nov., comb. nov., transfer of Thiobacillus (Beijerinck, 1904) from the Hydrogenophilales to the Nitrosomonadales, proposal of Hydrogenophilalia class. nov. within the 'Proteobacteria', and four new families within the orders Nitrosomonadales and Rhodocyclales. Int J Syst Evol Microbiol 2017;67:1191–1205 [CrossRef][PubMed]
    [Google Scholar]
  17. Boden R, Scott KM, Williams J, Russel S, Antonen K et al. An evaluation of Thiomicrospira, Hydrogenovibrio and Thioalkalimicrobium: reclassification of four species of Thiomicrospira to each Thiomicrorhabdus gen. nov. and Hydrogenovibrio, and reclassification of all four species of Thioalkalimicrobium to Thiomicrospira. Int J Syst Evol Microbiol 2017;67:1140–1151 [CrossRef][PubMed]
    [Google Scholar]
  18. Boden R, Scott KM, Rae AW, Hutt LP. Reclassification of Thiomicrospira hydrogeniphila (Watsuji et al. 2016) to Thiomicrorhabdus hydrogeniphila comb. nov., with emended description of Thiomicrorhabdus (Boden et al., 2017). Int J Syst Evol Microbiol 2017;67:4205–4209 [CrossRef][PubMed]
    [Google Scholar]
  19. Boden R. Reclassification of Halothiobacillus hydrothermalis and Halothiobacillus halophilus to Guyparkeria gen. nov. in the Thioalkalibacteraceae fam. nov., with emended descriptions of the genus Halothiobacillus and family Halothiobacillaceae. Int J Syst Evol Microbiol 2017;67:3919–3928 [CrossRef][PubMed]
    [Google Scholar]
  20. Jolley KA, Bliss CM, Bennett JS, Bratcher HB, Brehony C et al. Ribosomal multilocus sequence typing: universal characterization of bacteria from domain to strain. Microbiology 2012;158:1005–1015 [CrossRef][PubMed]
    [Google Scholar]
  21. Badger MR, Bek EJ. Multiple Rubisco forms in proteobacteria: their functional significance in relation to CO2 acquisition by the CBB cycle. J Exp Bot 2008;59:1525–1541 [CrossRef][PubMed]
    [Google Scholar]
  22. Tabita FR, Hanson TE, Satagopan S, Witte BH, Kreel NE. Phylogenetic and evolutionary relationships of RubisCO and the RubisCO-like proteins and the functional lessons provided by diverse molecular forms. Philos Trans R Soc Lond B Biol Sci 2008;363:2629–2640 [CrossRef][PubMed]
    [Google Scholar]
  23. Axen SD, Erbilgin O, Kerfeld CA. A taxonomy of bacterial microcompartment loci constructed by a novel scoring method. PLoS Comput Biol 2014;10:e1003898 [CrossRef][PubMed]
    [Google Scholar]
  24. Scott KM, Williams J, Porter CMB, Russel S, Harmer TL et al. Genomes of ubiquitous marine and hypersaline Hydrogenovibrio, Thiomicrorhabdus and Thiomicrospira spp. encode a diversity of mechanisms to sustain chemolithoautotrophy in heterogeneous environments. Environ Microbiol 2018; in press. doi: [CrossRef][PubMed]
    [Google Scholar]
  25. Boden R, Hutt LP, Huntemann M, Clum A, Pillay M et al. Permanent draft genome of Thermithiobacillus tepidarius DSM 3134T, a moderately thermophilic, obligately chemolithoautotrophic member of the Acidithiobacillia. Stand Genomic Sci 2016;11:74 [CrossRef]
    [Google Scholar]
  26. Odintsova EV, Wood AP, Kelly DP. Chemolithoautotrophic growth of Thiothrix ramosa. Arch Microbiol 1993;160:152–157
    [Google Scholar]
  27. Smith AJ, London J, Stanier RY. Biochemical basis of obligate autotrophy in blue-green algae and thiobacilli. J Bacteriol 1967;94:972–983[PubMed]
    [Google Scholar]
  28. Quasem I, Achille AN, Caddick BA, Carter TA, Daniels C et al. Peculiar citric acid cycle of hydrothermal vent chemolithoautotroph Hydrogenovibrio crunogenus, and insights into carbon metabolism by obligate autotrophs. FEMS Microbiol Lett 2017;364:fxn148 [CrossRef][PubMed]
    [Google Scholar]
  29. Wood AP, Aurikko JP, Kelly DP. A challenge for 21st century molecular biology and biochemistry: what are the causes of obligate autotrophy and methanotrophy?. FEMS Microbiol Rev 2004;28:335–352[PubMed]
    [Google Scholar]
  30. Hutt LP, Huntemann M, Clum A, Pillay M, Palaniappan K et al. Permanent draft genome of Thiobacillus thioparus DSM 505T, an obligately chemolithoautotrophic member of the Betaproteobacteria. Stand Genomic Sci 2017;12:10 [CrossRef][PubMed]
    [Google Scholar]
  31. Kornberg HL, Krebs HA. Synthesis of cell constituents from C2-units by a modified tricarboxylic acid cycle. Nature 1957;179:988–991[PubMed]
    [Google Scholar]
  32. Anthony C. The Biochemistry of Methylotrophs London: Academic Press; 1982; pp.152–194
    [Google Scholar]
  33. Quayle JR, Ferenci T. Evolutionary aspects of autotrophy. Microbiol Rev 1978;42:251–273[PubMed]
    [Google Scholar]
  34. Large PJ, Peel D, Quayle JR. Microbial growth on C1 compounds. II. Synthesis of cell constituents by methanol- and formate-grown Pseudomonas AM 1, and methanol-grown Hyphomicrobium vulgare. Biochem J 1961;81:470–480 [CrossRef][PubMed]
    [Google Scholar]
  35. Entner N, Doudoroff M. Glucose and gluconic acid oxidation of Pseudomonas saccharophila. J Biol Chem 1952;196:853–862[PubMed]
    [Google Scholar]
  36. Flamholz A, Noor E, Bar-Even A, Liebermeister W, Milo R. Glycolytic strategy as a tradeoff between energy yield and protein cost. Proc Natl Acad Sci USA 2013;110:10039–10044 [CrossRef][PubMed]
    [Google Scholar]
  37. Boden R, Kelly DP, Murrell JC, Schäfer H. Oxidation of dimethylsulfide to tetrathionate by Methylophaga thiooxidans sp. nov.: a new link in the sulfur cycle. Environ Microbiol 2010;12:2688–2699 [CrossRef][PubMed]
    [Google Scholar]
  38. Boden R, Ferriera S, Johnson J, Kelly DP, Murrell JC et al. Draft genome sequence of the chemolithoheterotrophic, halophilic methylotroph Methylophaga thiooxydans DMS010. J Bacteriol 2011;193:3154–3155 [CrossRef][PubMed]
    [Google Scholar]
  39. Giuffrè A, Borisov VB, Arese M, Sarti P, Forte E. Cytochrome bd oxidase and bacterial tolerance to oxidative and nitrosative stress. Biochim Biophys Acta 2014;1837:1178–1187 [CrossRef][PubMed]
    [Google Scholar]
  40. Odintsova EV, Dubinina GA. New filamentous colourless sulphur bacteria Thiothrix ramosa nov. sp. Mikrobiologiia 1990;59:637–644
    [Google Scholar]
  41. Odintsova EV, Dubinina GA. The growth cycle, reproduction and ultrastructure of Thiothrix ramosa. Mikrobiologiia 1991;60:314–320
    [Google Scholar]
  42. Odintsova EV, Dubinina GA. The role of reduced sulphur compounds on the metabolism of Thiothrix ramosa. Mikrobiologiia 1993;62:213–222
    [Google Scholar]
  43. Polz MF, Odintsova EV, Cavanaugh CM. Phylogenetic relationships of the filamentous sulfur bacterium Thiothrix ramosa based on 16S rRNA sequence analysis. Int J Syst Bacteriol 1996;46:94–97 [CrossRef][PubMed]
    [Google Scholar]
  44. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004;32:1792–1797 [CrossRef][PubMed]
    [Google Scholar]
  45. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33:1870–1874 [CrossRef][PubMed]
    [Google Scholar]
  46. Tamura K, Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 1993;10:512–526 [CrossRef][PubMed]
    [Google Scholar]
  47. Le SQ, Gascuel O. An improved general amino acid replacement matrix. Mol Biol Evol 2008;25:1307–1320 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002816
Loading
/content/journal/ijsem/10.1099/ijsem.0.002816
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error