sp. nov., a moderately haloalkaliphilic bacterium from a coastal-marine wetland Free

Abstract

A Gram-stain-positive, endospore-forming rod-shaped non-motile, moderately halophilic and alkaliphilic bacterium, strain GASy1, was isolated from a water sample from Gomishan, a marine wetland in Iran. GASy1 required at least 0.5 % (w/v) NaCl for growth and was able to grow at NaCl concentrations of up to 15 % (w/v), with optimum growth occurring at 5 % (w/v) NaCl. The optimum pH and temperature for growth were pH 8.5–9.0 and 30 °C, respectively, while it was able to grow over a pH range and a temperature range of 7.5–10.0 and 4–40 °C, respectively. GASy1 was catalase-positive and oxidase-negative. Analysis of 16S rRNA gene sequences revealed that GASy1 represents a member of the genus , family within the order , showing 97.4 % sequence similarity to JSM 071004, and 96.2 and 95.7 % sequence similarity to AC 13 and S9, respectively. The DNA G+C content of GASy1 was 38.8 mol%. The polar lipids of the strain were phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine and two unidentified phospholipids and its major cellular fatty acids were anteiso-C, C and iso-C. The isoprenoid quinone was MK-7. DNA–DNA hybridization experiments revealed a low level of relatedness between GASy1 and IBRC-M 10892 (18 %). On the basis of a combination of phenotypic, chemotaxonomic and phylogenetic features, GASy1 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain of is GASy1 (=IBRC M 10902=LMG 28385).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002814
2018-07-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/7/2214.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002814&mimeType=html&fmt=ahah

References

  1. Sultanpuram VR, Mothe T. Salipaludibacillus aurantiacus gen. nov., sp. nov. a novel alkali tolerant bacterium, reclassification of Bacillus agaradhaerens as Salipaludibacillus agaradhaerens comb. nov. and Bacillus neizhouensis as Salipaludibacillus neizhouensis comb. nov. Int J Syst Evol Microbiol 2016; 66:2747–2753 [View Article][PubMed]
    [Google Scholar]
  2. Chen YG, Zhang YQ, Wang YX, Liu ZX, Klenk HP et al. Bacillus neizhouensis sp. nov., a halophilic marine bacterium isolated from a sea anemone. Int J Syst Evol Microbiol 2009; 59:3035–3039 [View Article][PubMed]
    [Google Scholar]
  3. Nielsen P, Fritze D, Priest FG. Phenetic diversity of alkaliphilic Bacillus strains: proposal for nine new species. Microbiology 1995; 141:1745–1761 [View Article]
    [Google Scholar]
  4. Ali Amoozegar M, Shahinpei A, Abolhassan Shahzadeh Fazeli S, Schumann P, Spröer C et al. Aliidiomarina iranensis sp. nov., a haloalkaliphilic bacterium from a coastal-marine wetland. Int J Syst Evol Microbiol 2016; 66:2099–2105 [View Article][PubMed]
    [Google Scholar]
  5. Shahinpei A, Amoozegar MA, Sepahy AA, Schumann P, Ventosa A. Cyclobacterium halophilum sp. nov., a marine bacterium isolated from a coastal-marine wetland. Int J Syst Evol Microbiol 2014; 64:1000–1005 [View Article][PubMed]
    [Google Scholar]
  6. Shahinpei A, Amoozegar MA, Shahzadeh Fazeli SA, Schumann P, Spröer C et al. Aliidiomarina sedimenti sp. nov., a haloalkaliphilic bacterium in the family Idiomarinaceae. Int J Syst Evol Microbiol 2017; 67:2087–2092 [View Article][PubMed]
    [Google Scholar]
  7. Amoozegar MA, Shahinpei A, Sepahy AA, Makhdoumi-Kakhki A, Seyedmahdi SS et al. Pseudomonas salegens sp. nov., a halophilic member of the genus Pseudomonas isolated from a wetland. Int J Syst Evol Microbiol 2014; 64:3565–3570 [View Article][PubMed]
    [Google Scholar]
  8. Shahinpei A, Amoozegar MA, Fazeli SA, Schumann P, Ventosa A. Salinispirillum marinum gen. nov., sp. nov., a haloalkaliphilic bacterium in the family 'Saccharospirillaceae'. Int J Syst Evol Microbiol 2014; 64:3610–3615 [View Article][PubMed]
    [Google Scholar]
  9. Atlas RM. Media for Environmental Microbiology, 2nd ed. Boca Raton: Taylor and Francis Group; 2005
    [Google Scholar]
  10. Ventosa A, Quesada E, Rodriguez-Valera F, Ruiz-Berraquero F, Ramos-Cormenzana A. Numerical taxonomy of moderately halophilic Gram-negative rods. Microbiology 1982; 128:1959–1968 [View Article]
    [Google Scholar]
  11. Logan NA, Berge O, Bishop AH, Busse HJ, De Vos P et al. Proposed minimal standards for describing new taxa of aerobic, endospore-forming bacteria. Int J Syst Evol Microbiol 2009; 59:2114–2121 [View Article][PubMed]
    [Google Scholar]
  12. Marmur J. A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 1961; 3:208–218 [View Article]
    [Google Scholar]
  13. Lane DJ. 16S/23S rRNA sequencing. In Stackebrandt E, Goodfellow M. (editors) Nucleic Acid Techniques in Bacterial Systematics Chichester: Wiley; 1991 pp. 115–175
    [Google Scholar]
  14. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30:2725–2729 [View Article][PubMed]
    [Google Scholar]
  15. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25:4876–4882[PubMed]
    [Google Scholar]
  16. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article][PubMed]
    [Google Scholar]
  17. Rzhetsky A, Nei M. A simple method for estimating and testing minimum-evolution trees. Mol Biol Evol 1992; 9:945–967
    [Google Scholar]
  18. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed]
    [Google Scholar]
  19. Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 2006; 22:2688–2690 [View Article][PubMed]
    [Google Scholar]
  20. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article][PubMed]
    [Google Scholar]
  21. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed]
    [Google Scholar]
  22. Murray RGE, Doetsch RN, Robinow CF. Determinative and cytological light microscopy. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994 pp. 21–41
    [Google Scholar]
  23. Montes MJ, Bozal N, Mercadé E. Marinobacter guineae sp. nov., a novel moderately halophilic bacterium from an Antarctic environment. Int J Syst Evol Microbiol 2008; 58:1346–1349 [View Article][PubMed]
    [Google Scholar]
  24. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994 pp. 607–654
    [Google Scholar]
  25. Gutiérrez C, González C. Method for simultaneous detection of proteinase and esterase activities in extremely halophilic bacteria. Appl Microbiol 1972; 24:516–517[PubMed]
    [Google Scholar]
  26. Mata JA, Martínez-Cánovas J, Quesada E, Béjar V. A detailed phenotypic characterisation of the type strains of Halomonas species. Syst Appl Microbiol 2002; 25:360–375 [View Article][PubMed]
    [Google Scholar]
  27. Quesada E, Ventosa A, Ruiz-Berraquero F, Ramos-Cormenzana A. Deleya halophila, a new species of moderately halophilic bacteria. Int J Syst Bacteriol 1984; 34:287–292 [View Article]
    [Google Scholar]
  28. Cashion P, Holder-Franklin MA, McCully J, Franklin M. A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 1977; 81:461–466 [View Article][PubMed]
    [Google Scholar]
  29. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989; 39:159–167 [View Article]
    [Google Scholar]
  30. De Ley J, Cattoir H, Reynaerts A. The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 1970; 12:133–142 [View Article][PubMed]
    [Google Scholar]
  31. Huss VA, Festl H, Schleifer KH. Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 1983; 4:184–192 [View Article][PubMed]
    [Google Scholar]
  32. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O et al. International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 1987; 37:463–464
    [Google Scholar]
  33. Schleifer KH. Analysis of the chemical composition and primary structure of murein. Methods Microbiol 1985; 18:123–156
    [Google Scholar]
  34. Schleifer KH, Kandler O. Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 1972; 36:407–477[PubMed]
    [Google Scholar]
  35. Rhuland LE, Work E, Denman RF, Hoare DS. The behavior of the isomers of α,ε-diaminopimelic acid on paper chromatograms. J Am Chem Soc 1955; 77:4844–4846 [View Article]
    [Google Scholar]
  36. Groth I, Schumann P, Weiss N, Martin K, Rainey FA. Agrococcus jenensis gen. nov., sp. nov., a new genus of actinomycetes with diaminobutyric acid in the cell wall. Int J Syst Bacteriol 1996; 46:234–239 [View Article][PubMed]
    [Google Scholar]
  37. Kämpfer P, Kroppenstedt RM. Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 1996; 42:989–1005 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002814
Loading
/content/journal/ijsem/10.1099/ijsem.0.002814
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited Most Cited RSS feed