1887

Abstract

A Gram-stain-negative, aerobic bacterial strain, designated strain m18, was isolated from a sea-tidal flat in South Korea. Cells were non-motile short rods showing oxidase and catalase activities. Growth of m18 was observed at 10–40 °C (optimum, 30 °C), pH 5.5–10.0 (optimum, pH 7.0) and 0.5–7.0 % (w/v) NaCl (optimum, 3.0 %). The major respiratory quinone was ubiquinone-10 and the major fatty acids of were summed feature 8 (comprising C18 : 1ω7c/C18 : 1ω6c) and C16 : 0. The G+C content of the genomic DNA was 56.7 mol%. Phosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, an unidentified phospholipid, an unidentified aminolipid and four unidentified lipids were detected in m18. The results of phylogenetic analysis based on 16S rRNA gene sequences indicated that m18 formed a tight phyletic lineage with the members of the genus Amylibacter . Strain m18 was most closely related to Amylibactercionae H-12, Amylibacter ulvae 6Alg 255 and Amylibacter marinus 2-3 with 98.9, 96.1 and 95.5 % 16S rRNA gene sequence similarities, respectively. The DNA–DNA hybridization value between m18 and the type strain of A. cionae was 43.6±3.4 %. On the basis of phenotypic, chemotaxonomic and molecular properties, m18 represents a novel species of the genus Amylibacter , for which the name Amylibacter lutimaris sp. nov. is proposed. The type strain is m18 (KACC 19229=JCM 32051).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002805
2018-05-02
2019-10-16
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/6/2088.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002805&mimeType=html&fmt=ahah

References

  1. Teramoto M, Nishijima M. Amylibacter marinus gen. nov., sp. nov., isolated from surface seawater. Int J Syst Evol Microbiol 2014; 64: 4016– 4020 [CrossRef] [PubMed]
    [Google Scholar]
  2. Nedashkovskaya OI, Kukhlevskiy AD, Zhukova NV, Kim SB. Amylibacter ulvae sp. nov., a new alphaproteobacterium isolated from the Pacific green alga Ulva fenestrata. Arch Microbiol 2016; 198: 251– 256 [CrossRef] [PubMed]
    [Google Scholar]
  3. Wang D, Wei Y, Cui Q, Li W. Amylibacter cionae sp. nov., isolated from the sea squirt Ciona savignyi. Int J Syst Evol Microbiol 2017; 67: 3462– 3466 [CrossRef] [PubMed]
    [Google Scholar]
  4. Jeong SH, Jin HM, Lee HJ, Jeon CO. Altererythrobacter gangjinensis sp. nov., a marine bacterium isolated from a tidal flat. Int J Syst Evol Microbiol 2013; 63: 971– 976 [CrossRef] [PubMed]
    [Google Scholar]
  5. Kim JM, Le NT, Chung BS, Park JH, Bae JW et al. Influence of soil components on the biodegradation of benzene, toluene, ethylbenzene, and o-, m-, and p-xylenes by the newly isolated bacterium Pseudoxanthomonas spadix BD-a59. Appl Environ Microbiol 2008; 74: 7313– 7320 [CrossRef] [PubMed]
    [Google Scholar]
  6. Muyzer G, de Waal EC, Uitterlinden AG. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 1993; 59: 695– 700 [PubMed]
    [Google Scholar]
  7. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67: 1613– 1617 [CrossRef] [PubMed]
    [Google Scholar]
  8. Heuer H, Hartung K, Wieland G, Kramer I, Smalla K. Polynucleotide probes that target a hypervariable region of 16S rRNA genes to identify bacterial isolates corresponding to bands of community fingerprints. Appl Environ Microbiol 1999; 65: 1045– 1049 [PubMed]
    [Google Scholar]
  9. Nawrocki EP, Eddy SR. Query-dependent banding (QDB) for faster RNA similarity searches. PLoS Comput Biol 2007; 3: e56 [CrossRef] [PubMed]
    [Google Scholar]
  10. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30: 2725– 2729 [CrossRef] [PubMed]
    [Google Scholar]
  11. Chang HW, Nam YD, Jung MY, Kim KH, Roh SW et al. Statistical superiority of genome-probing microarrays as genomic DNA–DNA hybridization in revealing the bacterial phylogenetic relationship compared to conventional methods. J Microbiol Methods 2008; 75: 523– 530 [CrossRef] [PubMed]
    [Google Scholar]
  12. Sambrook J, Russell DW. Molecular Cloning: A Laboratory Manual, 3rd ed. UK: Coldspring-Harbour Laboratory Press; 2001
    [Google Scholar]
  13. Luo R, Liu B, Xie Y, Li Z, Huang W et al. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 2012; 1: 18 [CrossRef] [PubMed]
    [Google Scholar]
  14. Stackebrandt E, Frederiksen W, Garrity GM, Grimont PA, Kämpfer P et al. Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int J Syst Evol Microbiol 2002; 52: 1043– 1047 [CrossRef] [PubMed]
    [Google Scholar]
  15. Stackebrandt E, Ebers J. Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 2006; 33: 152– 155
    [Google Scholar]
  16. Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64: 346– 351 [CrossRef] [PubMed]
    [Google Scholar]
  17. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68: 461– 466 [CrossRef] [PubMed]
    [Google Scholar]
  18. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25: 1043– 1055 [CrossRef] [PubMed]
    [Google Scholar]
  19. Gomori G. Preparation of buffers for use in enzyme studies. Methods Enzymol 1955; 1: 138– 146 [Crossref]
    [Google Scholar]
  20. Lányi B. Classical and rapid identification methods for medically important bacteria. Methods Microbiol 1987; 19: 1– 67
    [Google Scholar]
  21. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P. (editor) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994; pp. 607– 654
    [Google Scholar]
  22. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2: 233– 241 [CrossRef]
    [Google Scholar]
  23. Komagata K, Suzuki K. Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 1987; 19: 161– 208 [Crossref]
    [Google Scholar]
  24. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  25. Minnikin DE, Patel PV, Alshamaony L, Goodfellow M. Polar lipid composition in the classification of Nocardia and related bacteria. Int J Syst Bacteriol 1977; 27: 104– 117 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002805
Loading
/content/journal/ijsem/10.1099/ijsem.0.002805
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error