1887

Abstract

A Gram-staining-negative, aerobic, non-motile, rod-shaped bacterium, designated CAU 1453, was isolated from soil and its taxonomic position was investigated using a polyphasic approach. Strain CAU 1453 grew optimally at 30 °C and at pH 6.5 in the presence of 1 % (w/v) NaCl. Phylogenetic analysis based on the 16S rRNA gene sequences revealed that CAU 1453 represented a member of the genus and was most closely related to KACC 11381 (97.2 % similarity). CAU 1453 contained ubiquinone-8 (Q-8) as the predominant isoprenoid quinone and iso-C and iso-C as the major cellular fatty acids. The polar lipids consisted of diphosphatidylglycerol, a phosphoglycolipid, an aminophospholipid, two unidentified phospholipids and two unidentified glycolipids. CAU 1453 showed low DNA–DNA relatedness with the most closely related strain, KACC 11381 (26.5 %). The DNA G+C content was 67.3 mol%. On the basis of phenotypic, chemotaxonomic and phylogenetic data, CAU 1453 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is CAU 1453 (=KCTC 62235=NBRC 113093).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002801
2018-07-01
2020-01-22
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/7/2188.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002801&mimeType=html&fmt=ahah

References

  1. Kwon SW, Kim BY, Weon HY, Baek YK, Go SJ. Arenimonas donghaensis gen. nov., sp. nov., isolated from seashore sand. Int J Syst Evol Microbiol 2007;57:954–958 [CrossRef][PubMed]
    [Google Scholar]
  2. Aslam Z, Park JH, Kim SW, Jeon CO, Chung YR. Arenimonas oryziterrae sp. nov., isolated from a field of rice (Oryza sativa L.) managed under a no-tillage regime, and reclassification of Aspromonas composti as Arenimonas composti comb. nov. Int J Syst Evol Microbiol 2009;59:2967–2972 [CrossRef][PubMed]
    [Google Scholar]
  3. Jin L, Kim KK, An KG, Oh HM, Lee ST. Arenimonas daejeonensis sp. nov., isolated from compost. Int J Syst Evol Microbiol 2012;62:1674–1678 [CrossRef][PubMed]
    [Google Scholar]
  4. Chen F, Shi Z, Wang G. Arenimonas metalli sp. nov., isolated from an iron mine. Int J Syst Evol Microbiol 2012;62:1744–1749 [CrossRef][PubMed]
    [Google Scholar]
  5. Jeong HI, Jin HM, Jeon CO. Arenimonas aestuarii sp. nov., isolated from estuary sediment. Int J Syst Evol Microbiol 2016;66:1527–1532 [CrossRef][PubMed]
    [Google Scholar]
  6. Young CC, Kämpfer P, Ho MJ, Busse HJ, Huber BE et al. Arenimonas malthae sp. nov., a gammaproteobacterium isolated from an oil-contaminated site. Int J Syst Evol Microbiol 2007;57:2790–2793 [CrossRef][PubMed]
    [Google Scholar]
  7. Jin L, Kim KK, Im WT, Yang HC, Lee ST. Aspromonas composti gen. nov., sp. nov., a novel member of the family Xanthomonadaceae. Int J Syst Evol Microbiol 2007;57:1876–1880 [CrossRef][PubMed]
    [Google Scholar]
  8. Zhang SY, Xiao W, Xia YS, Wang YX, Cui XL et al. Arenimonas taoyuanensis sp. nov., a novel bacterium isolated from rice-field soil in China. Antonie van Leeuwenhoek 2015;107:1181–1187 [CrossRef][PubMed]
    [Google Scholar]
  9. Huy H, Jin L, Lee YK, Lee KC, Lee JS et al. Arenimonas daechungensis sp. nov., isolated from the sediment of a eutrophic reservoir. Int J Syst Evol Microbiol 2013;63:484–489 [CrossRef][PubMed]
    [Google Scholar]
  10. Yuan X, Nogi Y, Tan X, Zhang RG, Lv J. Arenimonas maotaiensis sp. nov., isolated from fresh water. Int J Syst Evol Microbiol 2014;64:3994–4000 [CrossRef][PubMed]
    [Google Scholar]
  11. Makk J, Homonnay ZG, Kéki Z, Nemes-Barnás K, Márialigeti K et al. Arenimonas subflava sp. nov., isolated from a drinking water network, and emended description of the genus Arenimonas. Int J Syst Evol Microbiol 2015;65:1915–1921 [CrossRef][PubMed]
    [Google Scholar]
  12. Xu L, Sun JQ, Liu X, Liu XZ, Qiao MQ et al. Arenimonas soli sp. nov., isolated from saline-alkaline soil. Int J Syst Evol Microbiol 2017;67:2829–2833 [CrossRef][PubMed]
    [Google Scholar]
  13. Zhu J, Wang HM, Zhang Q, Dong WW, Kong DL et al. Arenimonas alkanexedens sp. nov., isolated from a frozen soil sample. Antonie van Leeuwenhoek 2017;110:1027–1034 [CrossRef][PubMed]
    [Google Scholar]
  14. Gordon RE, Mihm JM. Identification of Nocardia caviae (Erikson) nov. comb. Ann N Y Acad Sci 1962;98:628–636 [CrossRef]
    [Google Scholar]
  15. Rainey FA, Ward-Rainey N, Kroppenstedt RM, Stackebrandt E. The genus Nocardiopsis represents a phylogenetically coherent taxon and a distinct actinomycete lineage: proposal of Nocardiopsaceae fam. nov. Int J Syst Bacteriol 1996;46:1088–1092 [CrossRef][PubMed]
    [Google Scholar]
  16. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67:1613–1617 [CrossRef][PubMed]
    [Google Scholar]
  17. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007;23:2947–2948 [CrossRef][PubMed]
    [Google Scholar]
  18. Jukes TH, Cantor CR. Evolution of protein molecules. In Munro HH. (editor) Mammalian Protein Metabolism New York: Academic Press; 1985; pp.21–132
    [Google Scholar]
  19. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425 [CrossRef][PubMed]
    [Google Scholar]
  20. Fitch WM, Margoliash E. Construction of phylogenetic trees. Science 1967;155:279–284 [CrossRef][PubMed]
    [Google Scholar]
  21. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971;20:406–416 [CrossRef]
    [Google Scholar]
  22. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  23. Felsenstein J. PHYLIP – phylogeny inference package (version3.2). Cladistics 1989;5:164–166
    [Google Scholar]
  24. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39:783–791 [CrossRef][PubMed]
    [Google Scholar]
  25. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989;39:159–167 [CrossRef]
    [Google Scholar]
  26. Ezaki T, Hashimoto Y, Yabuuchi E. Fluorometric deoxyribonucleic acid–deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 1989;39:224–229 [CrossRef]
    [Google Scholar]
  27. Goris J, Suzuki K-Ichiro, Vos PD, Nakase T, Kersters K. Evaluation of a microplate DNA–DNA hybridization method compared with the initial renaturation method. Can J Microbiol 1998;44:1148–1153 [CrossRef]
    [Google Scholar]
  28. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987;37:463–464 [CrossRef]
    [Google Scholar]
  29. Bernardet JF, Nakagawa Y, Holmes B.Subcommittee on the taxonomy of Flavobacterium and Cytophaga-like bacteria of the International Committee on Systematics of Prokaryotes Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 2002;52:1049–1070 [CrossRef][PubMed]
    [Google Scholar]
  30. Nicholson WL, Setlow P. Sporulation, germination and outgrowth. In Harwood CR, Cutting SM. (editors) Molecular Biological Methods for Bacillus Chichester: Wiley; 1990; pp.391–450
    [Google Scholar]
  31. Leifson E. Atlas of Bacterial Flagellation London: Academic Press; 1960
    [Google Scholar]
  32. Cappuccino JG, Sherman N. Microbiology: a Laboratory Manual, 6th ed. Menlo Park, CA: Benjamin/Cumming; 2002
    [Google Scholar]
  33. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994; pp.607–654
    [Google Scholar]
  34. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984;2:233–241 [CrossRef]
    [Google Scholar]
  35. Komagat K, Suzuki K. Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 1987;19:161–208
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002801
Loading
/content/journal/ijsem/10.1099/ijsem.0.002801
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error