1887

Abstract

A Gram-stain-negative, aerobic, catalase- and oxidase-positive, rod-shaped, flagellated bacterial strain, designated AMac2203, was isolated from the gut of the cinereous vulture, Aegypiusmonachus, collected from the Seoul Grand Park Zoo, Republic of Korea. Strain AMac2203 grew optimally at 15–25 °C, pH 7–8 and in the presence of 3–5 % (w/v) NaCl. Phylogenetic analysis revealed 97.4–97.9 % and 96.9–97.3 % sequence similarities of the 16S rRNA genes to its counterparts in Oceanisphaera profunda SM1222 and Oceanisphaera ostreae T-w6, respectively. The predominant fatty acids (>10 %) of strain AMac2203 were summed feature 3 (C16 : 0 ω7c and/or C16 : 1 ω6c, 33.6 %), summed feature 8 (C18 : 1 ω7c, 24.5 %) and C16 : 0 (19.9 %). The primary isoprenoid quinone was ubiquinone-8. Polar lipids included phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, an unidentified amino lipid and an unidentified lipid. Based on complete genome sequencing of strain AMac2203 and the closest related type strain, O. profunda , the OrthoANI value is 77.5 %, which is below the 95 % cut-off for species demarcation. The genomic DNA G+C content of strain AMac2203 is 47.1 mol%. Thus, strain AMac2203 represents a novel species candidate of the genus Oceanisphaera . We propose the name Oceanisphaera avium sp. nov., with strain AMac2203 (=KCTC 62118=JCM 32207) as the type strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002797
2018-05-03
2019-10-22
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/6/2068.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002797&mimeType=html&fmt=ahah

References

  1. Sekercioglu CH. Increasing awareness of avian ecological function. Trends Ecol Evol 2006;21:464–471 [CrossRef][PubMed]
    [Google Scholar]
  2. Blumstein DT, Rangchi TN, Briggs T, de Andrade FS, Natterson-Horowitz B. A systematic review of Carrion Eaters' adaptations to avoid sickness. J Wildl Dis 2017;53:577–581 [CrossRef][PubMed]
    [Google Scholar]
  3. Winsor DK, Bloebaum AP, Mathewson JJ. Gram-negative, aerobic, enteric pathogens among intestinal microflora of wild turkey vultures (Cathartes aura) in west central Texas. Appl Environ Microbiol 1981;42:1123–1124[PubMed]
    [Google Scholar]
  4. Roggenbuck M, Bærholm Schnell I, Blom N, Bælum J, Bertelsen MF et al. The microbiome of New World vultures. Nat Commun 2014;5:5498 [CrossRef][PubMed]
    [Google Scholar]
  5. Romanenko LA, Schumann P, Zhukova NV, Rohde M, Mikhailov VV et al. Oceanisphaera litoralis gen. nov., sp. nov., a novel halophilic bacterium from marine bottom sediments. Int J Syst Evol Microbiol 2003;53:1885–1888 [CrossRef][PubMed]
    [Google Scholar]
  6. Park SJ, Kang CH, Nam YD, Bae JW, Park YH et al. Oceanisphaera donghaensis sp. nov., a halophilic bacterium from the East Sea, Korea. Int J Syst Evol Microbiol 2006;56:895–898 [CrossRef][PubMed]
    [Google Scholar]
  7. Choi WC, Kang SJ, Jung YT, Oh TK, Yoon JH. Oceanisphaera ostreae sp. nov., isolated from seawater of an oyster farm, and emended description of the genus Oceanisphaera Romanenko et al. 2003. Int J Syst Evol Microbiol 2011;61:2880–2884 [CrossRef][PubMed]
    [Google Scholar]
  8. Shin NR, Whon TW, Roh SW, Kim MS, Kim YO et al. Oceanisphaera sediminis sp. nov., isolated from marine sediment. Int J Syst Evol Microbiol 2012;62:1552–1557 [CrossRef][PubMed]
    [Google Scholar]
  9. Srinivas TN, Reddy PV, Begum Z, Manasa P, Shivaji S. Oceanisphaera arctica sp. nov., isolated from Arctic marine sediment, and emended description of the genus Oceanisphaera. Int J Syst Evol Microbiol 2012;62:1926–1931 [CrossRef][PubMed]
    [Google Scholar]
  10. Xu Z, Zhang XY, Su HN, Yu ZC, Liu C et al. Oceanisphaera profunda sp. nov., a marine bacterium isolated from deep-sea sediment, and emended description of the genus Oceanisphaera. Int J Syst Evol Microbiol 2014;64:1252–1256 [CrossRef][PubMed]
    [Google Scholar]
  11. Liu J, Sun YW, Zhang DD, Li SN, Zhang DC. Oceanisphaera marina sp. nov., isolated from a deep-sea seamount. Int J Syst Evol Microbiol 2017;67:1996–2000 [CrossRef][PubMed]
    [Google Scholar]
  12. Zhou S, Wang H, Wang Y, Ma K, He M et al. Oceanisphaera psychrotolerans sp. nov., isolated from coastal sediment samples. Int J Syst Evol Microbiol 2015;65:2797–2802 [CrossRef][PubMed]
    [Google Scholar]
  13. Baker GC, Smith JJ, Cowan DA. Review and re-analysis of domain-specific 16S primers. J Microbiol Methods 2003;55:541–555 [CrossRef][PubMed]
    [Google Scholar]
  14. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67:1613–1617 [CrossRef][PubMed]
    [Google Scholar]
  15. Tittsler RP, Sandholzer LA. The use of semi-solid agar for the detection of bacterial motility. J Bacteriol 1936;31:575–580[PubMed]
    [Google Scholar]
  16. Manual MO. Sherlock Microbial Identification System, Version 4.5 Newark, DE: MIDI. Inc; 2002
    [Google Scholar]
  17. Collins MD, Jones D. A note on the separation of natural mixtures of bacterial ubiquinones using reverse-phase partition thin-layer chromatography and high performance liquid chromatography. J Appl Bacteriol 1981;51:129–134 [CrossRef][PubMed]
    [Google Scholar]
  18. Collins MD, Jones D. Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication. Microbiol Rev 1981;45:316–354[PubMed]
    [Google Scholar]
  19. Xin H, Itoh T, Zhou P, Suzuki K, Kamekura M et al. Natrinema versiforme sp. nov., an extremely halophilic archaeon from Aibi salt lake, Xinjiang, China. Int J Syst Evol Microbiol 2000;50:1297–1303 [CrossRef][PubMed]
    [Google Scholar]
  20. Tindall BJ. Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 1990;66:199–202 [CrossRef]
    [Google Scholar]
  21. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994;22:4673–4680 [CrossRef][PubMed]
    [Google Scholar]
  22. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33:1870–1874 [CrossRef][PubMed]
    [Google Scholar]
  23. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425 [CrossRef][PubMed]
    [Google Scholar]
  24. Kluge AG, Farris JS. Quantitative phyletics and the evolution of anurans. Syst Biol 1969;18:1–32 [CrossRef]
    [Google Scholar]
  25. Felsenstein J. Evolutionary trees from gene frequencies and quantitative characters: finding maximum likelihood estimates. Evolution 1981;35:1229–1242 [CrossRef][PubMed]
    [Google Scholar]
  26. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018;68:461–466 [CrossRef][PubMed]
    [Google Scholar]
  27. Lee I, Ouk Kim Y, Park SC, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016;66:1100–1103 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002797
Loading
/content/journal/ijsem/10.1099/ijsem.0.002797
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error