1887

Abstract

A novel strain, designated HMF3095, isolated from freshwater of a mesotrophic artificial lake in the Republic of Korea, was characterized by polyphasic taxonomy. The cells were Gram-stain-negative, aerobic, non-motile, straight rods and formed reddish colonies. Phylogenetic analysis based on its 16S rRNA gene sequence revealed that strain HMF3095 fell within the cluster of the genus and was most closely related to 16F7G and POB6 (96.7 % sequence similarity). Sequence similarities to all other type strains were 96.3 % or less. The major fatty acids were iso-C, Cω5, summed feature 4 (iso-C I and/or anteiso-C B), summed feature 3 (Cω7 and/or Cω6) and anteiso-C. The major isoprenoid quinone was menaquinone 7. The major polar lipids were phosphatidylethanolamine, three unidentified aminophospholipids and one unidentified phospholipid. The DNA G+C content was 58.9 mol%. On the basis of the evidence presented in this study, strain HMF3095 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is HMF3095 (=KCTC 52398=NBRC 112669).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002792
2018-06-01
2020-11-27
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/6/2036.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002792&mimeType=html&fmt=ahah

References

  1. Stanier RY. Studies on the cytophagas. J Bacteriol 1940;40:619–635[PubMed]
    [Google Scholar]
  2. Zhu HZ, Yang L, Muhadesi JB, Wang BJ, Liu SJ. Hymenobacter cavernae sp. nov., isolated from a karst cave. Int J Syst Evol Microbiol 2017;67:4825–4829 [CrossRef][PubMed]
    [Google Scholar]
  3. Kim MC, Kim CM, Kang OC, Zhang Y, Liu Z et al. Hymenobacter rutilus sp. nov., isolated from marine sediment in the Arctic. Int J Syst Evol Microbiol 2017;67:856–861 [CrossRef][PubMed]
    [Google Scholar]
  4. Sedláček I, Králová S, Kýrová K, Mašlaňová I, Busse HJ et al. Red-pink pigmented Hymenobacter coccineus sp. nov., Hymenobacter lapidarius sp. nov. and Hymenobacter glacialis sp. nov., isolated from rocks in Antarctica. Int J Syst Evol Microbiol 2017;67:1975–1983 [CrossRef][PubMed]
    [Google Scholar]
  5. Gu Z, Liu Y, Xu B, Wang N, Jiao N et al. Hymenobacter frigidus sp. nov., isolated from a glacier ice core. Int J Syst Evol Microbiol 2017;67:4121–4125 [CrossRef][PubMed]
    [Google Scholar]
  6. Lee JJ, Lee YH, Park SJ, Lee SY, Park S et al. Hymenobacter seoulensis sp. nov., isolated from river water. Int J Syst Evol Microbiol 2017;67:596–601 [CrossRef][PubMed]
    [Google Scholar]
  7. Lee JJ, Park SJ, Lee YH, Lee SY, Ten LN et al. Hymenobacter aquaticus sp. nov., a radiation-resistant bacterium isolated from a river. Int J Syst Evol Microbiol 2017;67:1206–1211 [CrossRef][PubMed]
    [Google Scholar]
  8. Chen WM, Chen WT, Young CC, Sheu SY. Hymenobacter gummosus sp. nov., isolated from a spring. Int J Syst Evol Microbiol 2017;67:4728–4735 [CrossRef][PubMed]
    [Google Scholar]
  9. Sheu SY, Li YS, Young CC, Chen WM. Hymenobacter pallidus sp. nov., isolated from a freshwater fish culture pond. Int J Syst Evol Microbiol 2017;67:2915–2921 [CrossRef][PubMed]
    [Google Scholar]
  10. Kang JW, Lee JH, Choe HN, Seong CN. Hymenobacter tenuis sp. nov., isolated from wastewater of an acidic water neutralization facility. Int J Syst Evol Microbiol 2017;67:2171–2177 [CrossRef][PubMed]
    [Google Scholar]
  11. Kang JW, Choi S, Choe HN, Seong CN. Hymenobacter defluvii sp. nov., isolated from wastewater of an acidic water neutralization facility. Int J Syst Evol Microbiol 2017;68:277–282 [CrossRef][PubMed]
    [Google Scholar]
  12. Kang H, Kim H, Joung Y, Kim KJ, Joh K. Hymenobacter marinus sp. nov., isolated from coastal seawater. Int J Syst Evol Microbiol 2016;66:2212–2217 [CrossRef][PubMed]
    [Google Scholar]
  13. Liu L, Zhou EM, Jiao JY, Manikprabhu D, Ming H et al. Hymenobacter latericoloratus sp. nov. and Hymenobacter luteus sp. nov., isolated from freshwater sediment. Antonie van Leeuwenhoek 2015;107:165–172 [CrossRef][PubMed]
    [Google Scholar]
  14. Fan X, Wang Q, Zheng S, Shi K, Wang G. Hymenobacter monticola sp. nov., isolated from mountain soil. Int J Syst Evol Microbiol 2016;66:812–816 [CrossRef][PubMed]
    [Google Scholar]
  15. Lane DJ. 16S/23S rRNA sequencing. In Stackebrandt E, Goodfellow M. (editors) Nucleic Acid Techniques in Bacterial Systematics Chichester: Wiley; 1991; pp.125–175
    [Google Scholar]
  16. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67:1613–1617 [CrossRef][PubMed]
    [Google Scholar]
  17. Pruesse E, Peplies J, Glöckner FO. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 2012;28:1823–1829 [CrossRef][PubMed]
    [Google Scholar]
  18. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33:1870–1874 [CrossRef][PubMed]
    [Google Scholar]
  19. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425 [CrossRef][PubMed]
    [Google Scholar]
  20. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971;20:406–416 [CrossRef]
    [Google Scholar]
  21. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  22. Jukes TH, Cantor CR. Evolution of protein molecules. In Munro HN. (editor) Mammalian Protein Metabolism, 3rd ed. New York: Academic Press; 1969; pp.21–132[Crossref]
    [Google Scholar]
  23. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987;37:463–464 [CrossRef]
    [Google Scholar]
  24. Stackebrandt E, Goebel BM. Taxonomic Note: a place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 1994;44:846–849 [CrossRef]
    [Google Scholar]
  25. Brown AE. Benson’s Microbiological Application Laboratory Manual in General Microbiology, 10th ed. New York: McGraw-Hill; 2007
    [Google Scholar]
  26. Hucker GJ. A new modification and application of the Gram stain. J Bacteriol 1921;6:395–397[PubMed]
    [Google Scholar]
  27. Bernardet JF, Nakagawa Y, Holmes B. Subcommittee on the taxonomy of Flavobacterium and Cytophaga-like bacteria of the International Committee on Systematics of Prokaryotes Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 2002;52:1049–1070 [CrossRef][PubMed]
    [Google Scholar]
  28. CLSI Performance Standards for Antimicrobial Disk Susceptibility Testing: Approved Standard, 11th ed. CLSI Document M02-A11 PA: Clinical and Laboratory Standards Institute; 2012
    [Google Scholar]
  29. Gonzalez JM, Saiz-Jimenez C. A fluorimetric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. Environ Microbiol 2002;4:770–773[PubMed][Crossref]
    [Google Scholar]
  30. Buczolits S, Denner EB, Kämpfer P, Busse HJ. Proposal of Hymenobacter norwichensis sp. nov., classification of 'Taxeobacter ocellatus', 'Taxeobacter gelupurpurascens' and 'Taxeobacter chitinovorans' as Hymenobacter ocellatus sp. nov., Hymenobacter gelipurpurascens sp. nov. and Hymenobacter chitinivorans sp. nov., respectively, and emended description of the genus Hymenobacter Hirsch et al. 1999. Int J Syst Evol Microbiol 2006;56:2071–2078 [CrossRef][PubMed]
    [Google Scholar]
  31. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  32. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984;2:233–241 [CrossRef]
    [Google Scholar]
  33. Collins MD. Analysis of isoprenoid quinones. In Gottschalk G. (editor) Methods in Microbiologyvol. 18 New York: Academic Press; 1985; pp.329–366
    [Google Scholar]
  34. Zhang Q, Liu C, Tang Y, Zhou G, Shen P et al. Hymenobacter xinjiangensis sp. nov., a radiation-resistant bacterium isolated from the desert of Xinjiang, China. Int J Syst Evol Microbiol 2007;57:1752–1756 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002792
Loading
/content/journal/ijsem/10.1099/ijsem.0.002792
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error