1887

Abstract

A novel heterotrophic, Gram-stain-negative, aerobic, rod-shaped bacterium, designated as strain MT5, was isolated from deep seawater in the Mariana Trench and characterized phylogenetically and phenotypically. Bacterial optimal growth occurred at 28 °C (range, 4–45 °C), pH 5–7 (pH 4–11) and with 3–7 % (w/v) NaCl (0–18 %). Phylogenetic analysis based on 16S rRNA gene sequence showed that strain MT5 was related to members of the genus Pseudomonas and shared the highest sequence identities with Pseudomonas pachastrellae CCUG 46540 (99.6 %), Pseudomonas aestusnigri VGXO14 (98.5 %) and Pseudomonas oceani KX 20 (98.4 %). The 16S rRNA gene sequence identities between strain MT5 and other members of the genus Pseudomonas were below 96.7 %. The digital DNA–DNA hybridization values between strain MT5 and the two type strains, P. pachastrellae and P. aestusnigri , were 38.9±2.5 and 25.8±2.4 %, respectively. The average nucleotide identity values between strain MT5 and the two type strains were 90.3 and 87.0 %, respectively. Strain MT5 and the two type strains shared 94.98 and 86.2 % average amino acid identity, and 30 and 33 Karlin genomic signature, respectively. The sole respiratory menaquinone was Q-9. The major polar lipids were phosphatidylethanolamine, diphosphatidyglycerol and phosphatidylglycerol. The predominant cellular fatty acids of strain MT5 were summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c) (35.3 %), summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c) (24.1 %), C16 : 0 (15.9 %) and C12 : 0 (7.2 %). The G+C content of the genomic DNA was 61.2 mol%. The combined genotypic and phenotypic data indicated that strain MT5 represents a novel species of the genus Pseudomonas , for which the name Pseudomonas abyssi sp. nov. is proposed, with the type strain MT5 (=KCTC 62295=MCCC 1K03351).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002785
2018-06-21
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/8/2462.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002785&mimeType=html&fmt=ahah

References

  1. Migula W. Über ein neues System der Bakterien. Arb Bakteriol InstKarlsruhe 1984; 1:235–238
    [Google Scholar]
  2. Timmis KN. Pseudomonas putida: a cosmopolitan opportunist par excellence. Environ Microbiol 2002; 4:779–781[PubMed]
    [Google Scholar]
  3. Zhang DC, Liu HC, Zhou YG, Schinner F, Margesin R. Pseudomonas bauzanensis sp. nov., isolated from soil. Int J Syst Evol Microbiol 2011; 61:2333–2337 [View Article][PubMed]
    [Google Scholar]
  4. Lee DH, Moon SR, Park YH, Kim JH, Kim H et al. Pseudomonas taeanensis sp. nov., isolated from a crude oil-contaminated seashore. Int J Syst Evol Microbiol 2010; 60:2719–2723 [View Article][PubMed]
    [Google Scholar]
  5. Pascual J, Lucena T, Ruvira MA, Giordano A, Gambacorta A et al. Pseudomonas litoralis sp. nov., isolated from Mediterranean seawater. Int J Syst Evol Microbiol 2012; 62:438–444 [View Article][PubMed]
    [Google Scholar]
  6. Wang MQ, Sun L. Pseudomonas oceani sp. nov., isolated from deep seawater. Int J Syst Evol Microbiol 2016; 66:4250–4255 [View Article][PubMed]
    [Google Scholar]
  7. Yoshida M, Yoshida-Takashima Y, Nunoura T, Takai K. Identification and genomic analysis of temperate Pseudomonas bacteriophage PstS-1 from the Japan trench at a depth of 7000 m. Res Microbiol 2015; 166:668–676 [View Article][PubMed]
    [Google Scholar]
  8. Carrión O, Miñana-Galbis D, Montes MJ, Mercadé E. Pseudomonas deceptionensis sp. nov., a psychrotolerant bacterium from the Antarctic. Int J Syst Evol Microbiol 2011; 61:2401–2405 [View Article][PubMed]
    [Google Scholar]
  9. Tamegai H, Li L, Masui N, Kato C. A denitrifying bacterium from the deep sea at 11,000-m depth. Extremophiles 1997; 1:207[PubMed]
    [Google Scholar]
  10. Romanenko LA, Uchino M, Tebo BM, Tanaka N, Frolova GM et al. Pseudomonas marincola sp. nov., isolated from marine environments. Int J Syst Evol Microbiol 2008; 58:706–710 [View Article][PubMed]
    [Google Scholar]
  11. Quigley MM, Colwell RR. Proposal of a new species Pseudomonas bathycetes. Int J Syst Bacteriol 1968; 18:241–252 [View Article]
    [Google Scholar]
  12. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed]
    [Google Scholar]
  13. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article][PubMed]
    [Google Scholar]
  14. Romanenko LA, Uchino M, Falsen E, Frolova GM, Zhukova NV et al. Pseudomonas pachastrellae sp. nov., isolated from a marine sponge. Int J Syst Evol Microbiol 2005; 55:919–924 [View Article][PubMed]
    [Google Scholar]
  15. Sánchez D, Mulet M, Rodríguez AC, David Z, Lalucat J et al. Pseudomonas aestusnigri sp. nov., isolated from crude oil-contaminated intertidal sand samples after the Prestige oil spill. Syst Appl Microbiol 2014; 37:89–94 [View Article][PubMed]
    [Google Scholar]
  16. Palleroni NJ. Pseudomonas. In Brenner DJ, Krieg NR, Staley JT. (editors) Bergey’s Manual of Systematic Bacteriology, 2nd ed. vol. 2 New York, NY: Springer; 2005 pp. 323–379
    [Google Scholar]
  17. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article][PubMed]
    [Google Scholar]
  18. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article][PubMed]
    [Google Scholar]
  19. Thompson CC, Chimetto L, Edwards RA, Swings J, Stackebrandt E et al. Microbial genomic taxonomy. BMC Genomics 2013; 14:913 [View Article][PubMed]
    [Google Scholar]
  20. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O et al. International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 1987; 37:463–464
    [Google Scholar]
  21. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article][PubMed]
    [Google Scholar]
  22. Blom J, Kreis J, Spänig S, Juhre T, Bertelli C et al. EDGAR 2.0: an enhanced software platform for comparative gene content analyses. Nucleic Acids Res 2016; 44:W22–W28 [View Article][PubMed]
    [Google Scholar]
  23. Lai Q, Yuan J, Gu L, Shao Z. Marispirillum indicum gen. nov., sp. nov., isolated from a deep-sea environment. Int J Syst Evol Microbiol 2009; 59:1278–1281 [View Article][PubMed]
    [Google Scholar]
  24. Tindall B, Sikorski J, Smibert R, Krieg N. Phenotypic characterization and the principles of comparative systematics. In Reddy CA, Beveridge TJ, Breznak JA, Marzluf GA, Schmidt TM et al. (editors) Methods for General and Molecular Microbiology, 3rd ed. Washington, DC: American Society for Microbiology; 2007 pp. 330–393
    [Google Scholar]
  25. Skerman V. A Guide to the Identification of the Genera of Bacteria: with Methods and Digests of Generic Characteristics, 2nd ed. Baltimore, MD: Williams & Wilkins; 1967
    [Google Scholar]
  26. Fang J, Zhang L, Li J, Kato C, Tamburini C et al. The POM-DOM piezophilic microorganism continuum (PDPMC)—The role of piezophilic microorganisms in the global ocean carbon cycle. Sci China Earth Sci 2015; 58:106–115 [View Article]
    [Google Scholar]
  27. Sambrook J, Russell DW. Molecular Cloning: a Laboratory Mannual, 3rd ed. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 2001
    [Google Scholar]
  28. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  29. Lang E, Burghartz M, Spring S, Swiderski J, Spröer C. Pseudomonas benzenivorans sp. nov. and Pseudomonas saponiphila sp. nov., represented by xenobiotics degrading type strains. Curr Microbiol 2010; 60:85–91 [View Article][PubMed]
    [Google Scholar]
  30. Wang LT, Tai CJ, Wu YC, Chen YB, Lee FL et al. Pseudomonas taiwanensis sp. nov., isolated from soil. Int J Syst Evol Microbiol 2010; 60:2094–2098 [View Article][PubMed]
    [Google Scholar]
  31. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. Microbiol Methods 1984; 2:233–241
    [Google Scholar]
  32. Tindall BJ. Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 1990; 66:199–202 [View Article]
    [Google Scholar]
  33. Cámara B, Strömpl C, Verbarg S, Spröer C, Pieper DH et al. Pseudomonas reinekei sp. nov., Pseudomonas moorei sp. nov. and Pseudomonas mohnii sp. nov., novel species capable of degrading chlorosalicylates or isopimaric acid. Int J Syst Evol Microbiol 2007; 57:923–931 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002785
Loading
/content/journal/ijsem/10.1099/ijsem.0.002785
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error