1887

Abstract

A Gram-stain-negative, strictly aerobic, motile, rod-shaped bacterium, designated strain RKSG058, was isolated from the marine sponge , collected off the west coast of San Salvador, The Bahamas. Phylogenetic analyses based on 16S rRNA gene sequences revealed that RKSG058 formed a distinct lineage within the family (order , class ), and was most closely related to the genus , with sequence similarities to members of this genus ranging from 92.0 to 93.7 %. Optimal growth occurred at 30 °C, at pH 7 and in the presence of 2–3 % (w/v) NaCl. The predominant cellular fatty acids were summed feature 3 (Cω7 and/or Cω6), summed feature 8 (Cω7 and/or Cω6) and C. The major and minor respiratory quinones were Q-9 and Q-8, respectively. The polar lipids comprised diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, three unidentified aminolipids, an unidentified phospholipid and five unidentified lipids. The DNA G+C content was 42.3 mol%. Biochemical, chemotaxonomic and phylogenetic analyses indicated that strain RKSG058 represents the first cultured isolate of a novel bacterial genus and species within the family , for which the name gen. nov., sp. nov. is proposed. The type strain of is RKSG058 (=TSD-72=LMG 29871). An emended description of the genus is provided.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002781
2018-06-01
2020-01-22
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/6/2006.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002781&mimeType=html&fmt=ahah

References

  1. Garrity GM, Bell JA, Lilburn T. Family III. Hahellaceae fam. nov. In Brenner DJ, Krieg NR, Staley JT, Garrity GM. (editors) Bergey’s Manual of Systematic Bacteriology, 2nd ed.vol. 2 (The Proteobacteria), Part B (The Gammaproteobacteria) New York: Springer; 2005; pp.299
    [Google Scholar]
  2. Garrity GM, Bell JA. Order LT VIII. Oceanospirillales ord. nov. In Brenner DJ, Krieg NR, Staley JT, Garrity GM. (editors) Bergey’s Manual of Systematic Bacteriology, 2nd ed.vol. 2 (The Proteobacteria), Part B (The Gammaproteobacteria) New York: Springer; 2005; pp.270–323[Crossref]
    [Google Scholar]
  3. Garrity GM, Bell JA, Lilburn T. Class III. Gammaproteobacteria class. nov. In Brenner DJ, Krieg NR, Staley JT, Garrity GM. (editors) Bergey’s Manual of Systematic Bacteriology, 2nd ed.vol. 2 (The Proteobacteria), Part B (The Gammaproteobacteria) New York: Springer; 2005; pp.1
    [Google Scholar]
  4. Lee HK, Chun J, Moon EY, Ko SH, Lee DS et al. Hahella chejuensis gen. nov., sp. nov., an extracellular-polysaccharide-producing marine bacterium. Int J Syst Evol Microbiol 2001;51:661–666 [CrossRef][PubMed]
    [Google Scholar]
  5. Baik KS et al. Hahella ganghwensis sp. nov., isolated from tidal flat sediment. Int J Syst Evol Microbiol 2005;55:681–684 [CrossRef]
    [Google Scholar]
  6. Yi H, Chang Y-H, Hw O, Bae KS, Chun J. Zooshikella ganghwensis gen. nov., sp. nov., isolated from tidal flat sediments. Int J Syst Evol Microbiol 2003;53:1013–1018 [CrossRef]
    [Google Scholar]
  7. Ramaprasad EVV, Bharti D, Sasikala C, Ramana CV. Zooshikella marina sp. nov. a cycloprodigiosin- and prodigiosin-producing marine bacterium isolated from beach sand. Int J Syst Evol Microbiol 2015;65:4669–4673 [CrossRef]
    [Google Scholar]
  8. Kurahashi M, Yokota A. Endozoicomonas elysicola gen. nov., sp. nov., a γ-proteobacterium isolated from the sea slug Elysia ornata. Syst Appl Microbiol 2007;30:202–206 [CrossRef][PubMed]
    [Google Scholar]
  9. Yang CS, Chen MH, Arun AB, Chen CA, Wang JT et al. Endozoicomonas montiporae sp. nov., isolated from the encrusting pore coral Montipora aequituberculata. Int J Syst Evol Microbiol 2010;60:1158–1162 [CrossRef][PubMed]
    [Google Scholar]
  10. Nishijima M, Adachi K, Katsuta A, Shizuri Y, Yamasato K. Endozoicomonas numazuensis sp. nov., a gammaproteobacterium isolated from marine sponges, and emended description of the genus Endozoicomonas Kurahashi and Yokota 2007. Int J Syst Evol Microbiol 2013;63:709–714 [CrossRef]
    [Google Scholar]
  11. Pike RE, Haltli B, Kerr RG. Description of Endozoicomonas euniceicola sp. nov. and Endozoicomonas gorgoniicola sp. nov., bacteria isolated from the octocorals Eunicea fusca and Plexaura sp., and an emended description of the genus Endozoicomonas. Int J Syst Evol Microbiol 2013;63:4294–4302 [CrossRef]
    [Google Scholar]
  12. Hyun DW, Shin NR, Kim MS, Oh SJ, Kim PS et al. Endozoicomonas atrinae sp. nov., isolated from the intestine of a comb pen shell Atrina pectinata. Int J Syst Evol Microbiol 2014;64:2312–2318 [CrossRef][PubMed]
    [Google Scholar]
  13. Appolinario LR, Tschoeke DA, Rua CP, Venas T, Campeão ME et al. Description of Endozoicomonas arenosclerae sp. nov. using a genomic taxonomy approach. Antonie van Leeuwenhoek 2016;109:431–438 [CrossRef][PubMed]
    [Google Scholar]
  14. Appolinario LR, Tschoeke DA, Rua CP, Venas T, Campeão ME et al. Erratum to: description of Endozoicomonas arenosclerae sp. nov. using a genomic taxonomy approach. Antonie van Leeuwenhoek 2016;109:1071–1072 [CrossRef][PubMed]
    [Google Scholar]
  15. Schreiber L, Kjeldsen KU, Obst M, Funch P, Schramm A. Description of Endozoicomonas ascidiicola sp. nov., isolated from Scandinavian ascidians. Syst Appl Microbiol 2016;39:313–318 [CrossRef]
    [Google Scholar]
  16. Sheu SY, Lin KR, Hsu MY, Sheu DS, Tang SL et al. Endozoicomonas acroporae sp. nov., isolated from Acropora coral. Int J Syst Evol Microbiol 2017;67:3791–3797 [CrossRef][PubMed]
    [Google Scholar]
  17. Choi EJ, Kwon HC, Sohn YC, Yang HO. Kistimonas asteriae gen. nov., sp. nov., a gammaproteobacterium isolated from Asterias amurensis. Int J Syst Evol Microbiol 2010;60:938–943 [CrossRef]
    [Google Scholar]
  18. Lee J, Shin N-R, Lee H-W, Roh SW, Kim M-S et al. Kistimonas scapharcae sp. nov., isolated from a dead ark clam (Scapharca broughtonii), and emended description of the genus Kistimonas. Int J Syst Evol Microbiol 2012;62:2865–2869 [CrossRef]
    [Google Scholar]
  19. Sorokin DY, Tourova TP, Galinski EA, Belloch C, Tindall BJ. Extremely halophilic denitrifying bacteria from hypersaline inland lakes, Halovibrio denitrificans sp. nov. and Halospina denitrificans gen. nov., sp. nov., and evidence that the genus name Halovibrio Fendrich 1989 with the type species Halovibrio variabilis should be associated with DSM 3050. Int J Syst Evol Microbiol 2006;56:379–388 [CrossRef]
    [Google Scholar]
  20. Lee K, Lee HK, Cho J-C. Hahella antarctica sp. nov., isolated from Antarctic seawater. Int J Syst Evol Microbiol 2008;58:353–356 [CrossRef]
    [Google Scholar]
  21. Han Y, Zhao R, Yu T, Li Z, Zhang XH. Allohahella marinimesophila gen. nov., sp. nov., isolated from seawater and reclassification of Hahella antarctica as Allohahella antarctica comb. nov. Int J Syst Evol Microbiol 2016;66:3207–3213 [CrossRef][PubMed]
    [Google Scholar]
  22. Stackebrandt E, Goebel BM. Taxonomic Note: a place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 1994;44:846–849 [CrossRef]
    [Google Scholar]
  23. Lane DJ. 16S/23S rRNA sequencing. In Stackebrandt E, Goodfellow M. (editors) Nucleic Acid Techniques in Bacterial Systematics New York: John Wiley and Sons; 1991; pp.115–175
    [Google Scholar]
  24. Manefield M, Whiteley AS, Griffiths RI, Bailey MJ. RNA stable isotope probing, a novel means of linking microbial community function to phylogeny. Appl Environ Microbiol 2002;68:5367–5373 [CrossRef][PubMed]
    [Google Scholar]
  25. Gontang EA, Fenical W, Jensen PR. Phylogenetic diversity of gram-positive bacteria cultured from marine sediments. Appl Environ Microbiol 2007;73:3272–3282 [CrossRef][PubMed]
    [Google Scholar]
  26. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997;25:3389–3402 [CrossRef][PubMed]
    [Google Scholar]
  27. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007;23:2947–2948 [CrossRef]
    [Google Scholar]
  28. Hall T. BioEdit: an important software for molecular biology. GERF Bull Biosci 2011;2:60–61
    [Google Scholar]
  29. Yoon S-H, S-m H, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole genome assemblies. Int J Syst Evol Microbiol 2017;67:1613–1617[Crossref]
    [Google Scholar]
  30. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425
    [Google Scholar]
  31. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef]
    [Google Scholar]
  32. Fitch WM. Toward finding the tree of maximum parsimony. In Estabrook GF. (editor) Proceedings of the International Freeman Conference in Numerical Taxonomy San Francisco: W. H. Freeman; 1975; pp.189–230
    [Google Scholar]
  33. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33:1870–1874 [CrossRef]
    [Google Scholar]
  34. Kimura M. The Neutral Theory of Molecular Evolution Cambridge: Cambridge University Press; 1983;[Crossref]
    [Google Scholar]
  35. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39:783–791 [CrossRef][PubMed]
    [Google Scholar]
  36. Gee AH, Hunt GA. Single cell technic a presentation of the pipette method as a routine laboratory procedure. J Bacteriol 1928;16:327–353
    [Google Scholar]
  37. Dornbusch K, Nord CE, Olsson B. Antibiotic susceptibility testing of anaerobic bacteria by the standardized disc diffusion method with special reference to Bacteroides fragilis. Scand J Infect Dis 2015;7:59–66 [CrossRef][PubMed]
    [Google Scholar]
  38. Nokhal T-H, Schlegel HG. Taxonomic study of Paracoccus denitrificans. Int J Syst Bacteriol 1983;33:26–37 [CrossRef]
    [Google Scholar]
  39. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  40. Tindall BJ. Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 1990;66:199–202 [CrossRef]
    [Google Scholar]
  41. Lohman DC, Forouhar F, Beebe ET, Stefely MS, Minogue CE et al. Mitochondrial COQ9 is a lipid-binding protein that associates with COQ7 to enable coenzyme Q biosynthesis. Proc Natl Acad Sci USA 2014;111:E4697E4705 [CrossRef][PubMed]
    [Google Scholar]
  42. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984;2:233–241 [CrossRef]
    [Google Scholar]
  43. Worliczek HL, Kämpfer P, Rosengarten R, Tindall BJ, Busse HJ. Polar lipid and fatty acid profiles–re-vitalizing old approaches as a modern tool for the classification of mycoplasmas?. Syst Appl Microbiol 2007;30:355–370 [CrossRef][PubMed]
    [Google Scholar]
  44. Suzuki K, Goodfellow M, O’Donnell AG. Cell envelopes and classification. In Goodfellow M, O’Donnell AG. (editors) Handbook of New Bacterial Systematics London: Academic Press Ltd; 1993; pp.195–250
    [Google Scholar]
  45. Consden R, Gordon AH. Effect of salt on partition chromatograms. Nature 1948;162:180–181 [CrossRef]
    [Google Scholar]
  46. Dittmer JC, Lester RL. A simple, specific spray for the detection of phospholipids on thin-layer chromatograms. J Lipid Res 1964;5:126–127[PubMed]
    [Google Scholar]
  47. Jacin H, Mishkin AR. Separation of carbonhydrates on borate-impregnated silica gel G plates. J Chromatogr A 1965;18:170–173 [CrossRef]
    [Google Scholar]
  48. Tamaoka J, Komagata K. Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 1984;25:125–128 [CrossRef]
    [Google Scholar]
  49. Gehrke CW, Kuo KC, McCune RA, Gerhardt KO, Agris PF. Quantitative enzymatic hydrolysis of tRNAs. J Chromatogr B Biomed Sci Appl 1982;230:297–308 [CrossRef]
    [Google Scholar]
  50. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989;39:159–167 [CrossRef]
    [Google Scholar]
  51. Wietstock SM. DNA composition analysis by nuclease digestion and hplC. J Chem Educ 1995;72:950 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002781
Loading
/content/journal/ijsem/10.1099/ijsem.0.002781
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error