1887

Abstract

A Gram-stain-negative, rod-shaped, catalase- and oxidase-positive, facultatively anaerobic, and motile bacterium, designated strain SZDIS-1, was isolated from pigpen sawdust bedding in Xiamen, Fujian Province, China. Cells grew at 10–50 °C, pH 6.0–9.0, up to 12 % (w/v) NaCl, resisted vibriostatic agent O/129 and were negative for gelatin and alginate hydrolysis. No growth on thiosulfate citrate bile salts sucrose agar medium. Based on 16S rRNA gene sequences and multilocus sequence analysis, this strain should be assigned to the genus Vibrio , with the closest relatives being Vibrio aphrogenes CA-1004 (97.7 % 16S rRNA gene sequence pairwise similarity), Vibrio algivorus SA2 (96.6 %), Vibrio casei WS 4539 (96.3 %), Vibrio rumoiensis S-1 (96.1 %) and Vibrio litoralis MANO22D (95.5 %), but separate from them by large distances in different phylogenetic trees. Based on whole genome analysis, the orthologous average nucleotide identity and in silico DNA–DNA hybridization values against the five relatives were 76.1–78.7 and 20.1–28.7 %. The major fatty acids were summed feature 3 (C16 : 1 ω7c/C16 : 1 ω6c), C16 : 0, summed feature 2 (one or more of C12 : 0 aldehyde, C14 : 0 3OH and/or iso-C16 : 1) and summed feature 8 (C18 : 1ω6c and/or C18 : 1ω7c). The DNA G+C content was 43.0 mol% from whole genomic sequence analysis. Therefore, phylogenetic, genotypic, phenotypic and chemotaxonomic characteristics showed that the isolate represented a novel species of the genus Vibrio , for which the name Vibrio gangliei sp. nov. is proposed. The type strain is SZDIS-1 (=DSM 104291=CGMCC 1.15236).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002779
2018-04-20
2019-12-08
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/6/1969.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002779&mimeType=html&fmt=ahah

References

  1. Baumann P, Schubert RHW. Genus II. Vibrionaceae Veron 1965, 5245AL. In Krieg NR, Holt JG. (editors) Bergey’s Manual of Systematic Bacteriologyvol. 1 Baltimore: Williams & Wilkins; 1984; pp. 516– 517
    [Google Scholar]
  2. Baumann P, Baumann L. Genus II. Photobacterium Beijerinck 1889, 401AL. In Krieg NR, Holt JG. (editors) Bergey’s Manual of Systematic Bacteriologyvol. 1 Baltimore: Williams & Wilkins; 1984; pp. 539– 545
    [Google Scholar]
  3. Mellado E, Moore ER, Nieto JJ, Ventosa A. Analysis of 16S rRNA gene sequences of Vibrio costicola strains: description of Salinivibrio costicola gen. nov., comb. nov. Int J Syst Bacteriol 1996; 46: 817– 821 [CrossRef] [PubMed]
    [Google Scholar]
  4. Thompson FL, Hoste B, Vandemeulebroecke K, Swings J. Reclassification of Vibrio hollisae as Grimontia hollisae gen. nov., comb. nov. Int J Syst Evol Microbiol 2003; 53: 1615– 1617 [CrossRef] [PubMed]
    [Google Scholar]
  5. Urbanczyk H, Ast JC, Higgins MJ, Carson J, Dunlap PV. Reclassification of Vibrio fischeri, Vibrio logei, Vibrio salmonicida and Vibrio wodanis as Aliivibrio fischeri gen. nov., comb. nov., Aliivibrio logei comb. nov., Aliivibrio salmonicida comb. nov. and Aliivibrio wodanis comb. nov. Int J Syst Evol Microbiol 2007; 57: 2823– 2829 [CrossRef] [PubMed]
    [Google Scholar]
  6. Huang Z, Dong C, Shao Z. Paraphotobacterium marinum gen. nov., sp. nov., a member of the family Vibrionaceae, isolated from surface seawater. Int J Syst Evol Microbiol 2016; 66: 3050– 3056 [CrossRef] [PubMed]
    [Google Scholar]
  7. Amin A, Tanaka M, Al-Saari N, Feng G, Mino S et al. Thaumasiovibrio occultus gen. nov. sp. nov. and Thaumasiovibrio subtropicus sp. nov. within the family Vibrionaceae, isolated from coral reef seawater off Ishigaki Island, Japan. Syst Appl Microbiol 2017; 40: 290– 296 [CrossRef] [PubMed]
    [Google Scholar]
  8. Thompson FL, Hoste B, Thompson CC, Goris J, Gomez-Gil B et al. Enterovibrio norvegicus gen. nov., sp. nov., isolated from the gut of turbot (Scophthalmus maximus) larvae: a new member of the family Vibrionaceae. Int J Syst Evol Microbiol 2002; 52: 2015– 2022 [CrossRef] [PubMed]
    [Google Scholar]
  9. Pascual J, Macián MC, Arahal DR, Garay E, Pujalte MJ et al. Description of Enterovibrio nigricans sp. nov., reclassification of Vibrio calviensis as Enterovibrio calviensis comb. nov. and emended description of the genus Enterovibrio Thompson et al. 2002. Int J Syst Evol Microbiol 2009; 59: 698– 704 [CrossRef] [PubMed]
    [Google Scholar]
  10. Farmer JJ, Michael JJ. Genus I. Vibrio Pacini 1854, 411AL. In Garrity GM. (editor) Bergey’s Manual of Systematic Bacteriology, 2nd ed.vol. 2 The Proteobacteria, Part B New York: Springer Press; 2005; pp. 494– 513
    [Google Scholar]
  11. Yumoto I, Iwata H, Sawabe T, Ueno K, Ichise N et al. Characterization of a facultatively psychrophilic bacterium, Vibrio rumoiensis sp. nov., that exhibits high catalase activity. Appl Environ Microbiol 1999; 65: 67– 72
    [Google Scholar]
  12. Nam YD, Chang HW, Park JR, Kwon HY, Quan ZX et al. Vibrio litoralis sp. nov., isolated from a Yellow Sea tidal flat in Korea. Int J Syst Evol Microbiol 2007; 57: 562– 565 [CrossRef] [PubMed]
    [Google Scholar]
  13. Bleicher A, Neuhaus K, Scherer S. Vibrio casei sp. nov., isolated from the surfaces of two French red smear soft cheeses. Int J Syst Evol Microbiol 2010; 60: 1745– 1749 [CrossRef]
    [Google Scholar]
  14. Doi H, Chinen A, Fukuda H, Usuda Y. Vibrio algivorus sp. nov., an alginate- and agarose-assimilating bacterium isolated from the gut flora of a turban shell marine snail. Int J Syst Evol Microbiol 2016; 66: 3164– 3169 [CrossRef]
    [Google Scholar]
  15. Tanaka M, Endo S, Kotake F, Al-Saari N, Amin A et al. Vibrio aphrogenes sp. nov., in the Rumoiensis clade isolated from a seaweed. PLoS One 2017; 12: e0180053 [CrossRef] [PubMed]
    [Google Scholar]
  16. Reasoner DJ, Geldreich EE. A new medium for the enumeration and subculture of bacteria from potable water. Appl Environ Microbiol 1985; 49: 1– 7
    [Google Scholar]
  17. Cai M, Wang L, Cai H, Li Y, Wang YN et al. Salinarimonas ramus sp. nov. and Tessaracoccus oleiagri sp. nov., isolated from a crude oil-contaminated saline soil. Int J Syst Evol Microbiol 2011; 61: 1767– 1775 [CrossRef] [PubMed]
    [Google Scholar]
  18. Lee I, Ouk Kim Y, Park SC, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66: 1100– 1103 [CrossRef] [PubMed]
    [Google Scholar]
  19. Yoon SH, Sm H, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. 2017;110 1281– 1286
  20. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14: 60 [CrossRef] [PubMed]
    [Google Scholar]
  21. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994; 22: 4673– 4680 [CrossRef]
    [Google Scholar]
  22. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4: 406– 425
    [Google Scholar]
  23. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17: 368– 376 [CrossRef] [PubMed]
    [Google Scholar]
  24. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20: 406– 416 [CrossRef]
    [Google Scholar]
  25. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33: 1870– 1874 [CrossRef] [PubMed]
    [Google Scholar]
  26. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16: 111– 120 [CrossRef] [PubMed]
    [Google Scholar]
  27. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39: 783– 791 [CrossRef] [PubMed]
    [Google Scholar]
  28. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68: 461– 466 [CrossRef] [PubMed]
    [Google Scholar]
  29. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57: 81– 91 [CrossRef] [PubMed]
    [Google Scholar]
  30. Wayne LG, Brenner DJ, Colwell RR. International committee on systematic bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 1987; 37: 463– 464 [Crossref]
    [Google Scholar]
  31. Tang S-K, Li W-J, Dong W, Zhang Y-G, Xu L-H et al. Studies of the biological characteristics of some halophilic and halotolerant actinomycetes isolated from saline and alkaline soils. Actinomycetologica 2003; 17: 6– 10 [CrossRef]
    [Google Scholar]
  32. Dong XZ, Cai MY. Determination of Biochemical Properties Manual for the Systematic Identification of General Bacteria Beijing: Science Press; 2001; pp. 370– 398
    [Google Scholar]
  33. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids. USFCC News Lett 1990; 20: 1– 6
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002779
Loading
/content/journal/ijsem/10.1099/ijsem.0.002779
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error