1887

Abstract

A Gram-stain-negative, non-motile, aerobic, rod-shaped bacterium, designated 15182, was isolated from a saline lake in China. The novel strain 15182 was able to grow at 10–40 °C (optimum, 37 °C), pH 7.0–8.0 (optimum, 7.5) and with 0.5–4 % NaCl (optimum, 2–3 %, w/v). The phylogenetic analysis based on 16S rRNA gene sequences revealed that strain 15182 was most closely related to the genus Rhodohalobacter by sharing the highest sequence similarity of 97.0 % with Rhodohalobacter halophilus JZ3C29. Chemotaxonomic analysis showed that the sole respiratory quinone was menaquinone 7, the major fatty acids included C16 : 0 N alcohol and C16 : 1 ω11c. The major polar lipids included diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, four uncharacterized glycolipids, one uncharacterized phospholipid and two uncharacterized lipids. The genomic DNA G+C content of the strain 15182 was 42.4 mol%. The average nucleotide identity value between 15182 and R. halophilus JZ3C29 was 75.4 %, and the in silico DNA–DNA hybridization value of the two strains was 19.1 %. On the basis of its phenotypic, chemotaxonomic, genotypic and genomic characteristics presented in this study, strain 15182 is suggested to represent a novel species in the genus Rhodohalobacter, for which the name Rhodohalobacter barkolensis sp. nov. is proposed. The type strain is 15182 (=KCTC 62172=MCCC 1K03442). An emended description of the genus Rhodohalobacter is also presented.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002775
2018-04-20
2019-11-15
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/6/1949.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002775&mimeType=html&fmt=ahah

References

  1. Xia J, Xie ZH, Dunlap CA, Rooney AP, Du ZJ. Rhodohalobacter halophilus gen. nov., sp. nov., a moderately halophilic member of the family Balneolaceae. Int J Syst Evol Microbiol 2017; 67: 1281– 1287 [CrossRef] [PubMed]
    [Google Scholar]
  2. Huo YY, Xu XW, Cui HL, Wu M. Gracilibacillus ureilyticus sp. nov., a halotolerant bacterium from a saline-alkaline soil. Int J Syst Evol Microbiol 2010; 60: 1383– 1386 [CrossRef] [PubMed]
    [Google Scholar]
  3. Park SC, Baik KS, Kim MS, Kim SS, Kim SR et al. Aequorivita capsosiphonis sp. nov., isolated from the green alga Capsosiphon fulvescens, and emended description of the genus Aequorivita. Int J Syst Evol Microbiol 2009; 59: 724– 728 [CrossRef] [PubMed]
    [Google Scholar]
  4. Zhu XF, Jia XM, Zhang XQ, Yh W, Chen ZY et al. Modern Experimental Technique of Microbiology Hangzhou: Zhejiang University Press; 2011
    [Google Scholar]
  5. Sun C, Pan J, Zhang XQ, Su Y, Wu M. Pseudoroseovarius zhejiangensis gen. nov., sp. nov., a novel alpha-proteobacterium isolated from the chemical wastewater, and reclassification of Roseovarius crassostreae as Pseudoroseovarius crassostreae comb. nov., Roseovarius sediminilitoris as Pseudoroseovarius sediminilitoris comb. nov. and Roseovarius halocynthiae as Pseudoroseovarius halocynthiae comb. nov. Antonie van Leeuwenhoek 2015; 108: 291– 299 [CrossRef] [PubMed]
    [Google Scholar]
  6. Zhang WY, Huo YY, Zhang XQ, Zhu XF, Wu M. Halolamina salifodinae sp. nov. and Halolamina salina sp. nov., two extremely halophilic archaea isolated from a salt mine. Int J Syst Evol Microbiol 2013; 63: 4380– 4385 [CrossRef] [PubMed]
    [Google Scholar]
  7. Cowan ST, Steel KJ. Manual for the Identification of Medical Bacteria London: Cambridge University Press; 1965
    [Google Scholar]
  8. Mata JA, Martínez-Cánovas J, Quesada E, Béjar V. A detailed phenotypic characterisation of the type strains of Halomonas species. Syst Appl Microbiol 2002; 25: 360– 375 [CrossRef] [PubMed]
    [Google Scholar]
  9. Nokhal TH, Schlegel HG. Taxonomic Study of Paracoccus denitrificans. Int J Syst Bacteriol 1983; 33: 26– 37 [CrossRef]
    [Google Scholar]
  10. Zhong ZP, Liu Y, Wang F, Zhou YG, Liu HC et al. Planktosalinus lacus gen. nov., sp. nov., a member of the family Flavobacteriaceae isolated from a salt lake. Int J Syst Evol Microbiol 2016; 66: 2084– 2089 [CrossRef] [PubMed]
    [Google Scholar]
  11. Han SB, Su Y, Hu J, Wang RJ, Sun C et al. Terasakiella brassicae sp. nov., isolated from the wastewater of a pickle-processing factory, and emended descriptions of Terasakiella pusilla and the genus Terasakiella. Int J Syst Evol Microbiol 2016; 66: 1807– 1812 [CrossRef] [PubMed]
    [Google Scholar]
  12. Komagata K, Suzuki K. Lipids and cell-wall analysis in bacterial systematics. Methods Microbiol 1988; 19: 161– 207 [Crossref]
    [Google Scholar]
  13. Kuykendall LD, Roy MA, O'Neill JJ, Devine TE. Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. Int J Syst Bacteriol 1988; 38: 358– 361 [CrossRef]
    [Google Scholar]
  14. Xu XW, Wu YH, Zhou Z, Wang CS, Zhou YG et al. Halomonas saccharevitans sp. nov., Halomonas arcis sp. nov. and Halomonas subterranea sp. nov., halophilic bacteria isolated from hypersaline environments of China. Int J Syst Evol Microbiol 2007; 57: 1619– 1624 [CrossRef] [PubMed]
    [Google Scholar]
  15. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012; 62: 716– 721 [CrossRef] [PubMed]
    [Google Scholar]
  16. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994; 22: 4673– 4680 [CrossRef] [PubMed]
    [Google Scholar]
  17. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4: 406– 425 [CrossRef] [PubMed]
    [Google Scholar]
  18. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17: 368– 376 [CrossRef] [PubMed]
    [Google Scholar]
  19. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree Topology. Syst Zool 1971; 20: 406– 416 [CrossRef]
    [Google Scholar]
  20. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33: 1870– 1874 [CrossRef] [PubMed]
    [Google Scholar]
  21. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16: 111– 120 [CrossRef] [PubMed]
    [Google Scholar]
  22. Mesbah M, Whitman WB. Measurement of deoxyguanosine/thymidine ratios in complex mixtures by high-performance liquid chromatography for determination of the mole percentage guanine + cytosine of DNA. J Chromatogr 1989; 479: 297– 306 [CrossRef] [PubMed]
    [Google Scholar]
  23. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25: 1043– 1055 [CrossRef] [PubMed]
    [Google Scholar]
  24. Delcher AL, Bratke KA, Powers EC, Salzberg SL. Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics 2007; 23: 673– 679 [CrossRef] [PubMed]
    [Google Scholar]
  25. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ et al. The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res 2014; 42: D206– D214 [CrossRef] [PubMed]
    [Google Scholar]
  26. Lee I, Ouk Kim Y, Park SC, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66: 1100– 1103 [CrossRef] [PubMed]
    [Google Scholar]
  27. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14: 60 [CrossRef] [PubMed]
    [Google Scholar]
  28. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106: 19126– 19131 [CrossRef] [PubMed]
    [Google Scholar]
  29. Moore L, Moore E, Murray R, Stackebrandt E, Starr M. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 1987; 37: 463– 464 [Crossref]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002775
Loading
/content/journal/ijsem/10.1099/ijsem.0.002775
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error