1887

Abstract

A novel bacterium, designated strain E9, was isolated from pine forest soil of Kyonggi University (Suwon, Republic of Korea). Cells were facultatively anaerobic, Gram-staining-negative, catalase-negative, oxidase-positive, non-motile, non-spore-forming, rod-shaped and straw coloured. Prosthecae were absent. Glucose was fermented. The strain grew in the pH range of 5.0–10.0 (optimum, 6.5–8.5) and at 45 °C (optimum, 28–32 °C). E9 was sensitive to NaCl at low concentration and tolerated only 0.2 % NaCl (w/v). A phylogenetic analysis based on 16S rRNA gene sequences revealed that E9 formed a lineage within the phylum Proteobacteria that was distinct from various members of the order Rhizobiales , including Ancalomicrobium adetum DSM 4722 (94.76 % sequence similarity), ‘ Nitratireductor lucknowense ’ IITR-21 (92.72 %), Prosthecomicrobium hirschii 16 (92.66 %) and Kaistia soli DSM 19436 (92.53 %). The predominant isoprenoid quinone was Q-10. The major polar lipids were diphosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol and phosphatidyl-N-methylethanolamine. Major cellular fatty acids were summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c), summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c), and C16 : 0. The DNA G+C content of the type strain was 68.4 mol%. Polyphasic characterization indicated that strain E9 represented a novel species in a novel genus within a novel family, for which the name Pinisolibacter ravus gen. nov., sp. nov. is proposed. The type strain of Pinisolibacter ravus is E9 (=KEMB 9005-534=KACC 19120=NBRC 112686). A formal allocation of the genus Ancalomicrobium to the family Ancalomicrobiaceae fam. nov. is also proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002772
2018-04-23
2019-09-22
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/6/1955.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002772&mimeType=html&fmt=ahah

References

  1. Woese CR, Stackebrandt E, Weisburg WG, Paster BJ, Madigan MT et al. The phylogeny of purple bacteria: the alpha subdivision. Syst Appl Microbiol 1984; 5: 315– 326 [CrossRef] [PubMed]
    [Google Scholar]
  2. Kuykendall LD. Order VI. Rhizobiales ord. nov. In Brenner DJ, Krieg NR, Staley JT, Garrity GM. (editors) Bergey’s Manual of Systematic Bacteriology, 2nd ed.vol. 2 part C New York: Springer; 2005; pp. 324
    [Google Scholar]
  3. Garrity GM, Bell JA, Lilburn TG. Taxonomic outline of the prokaryotes. In Bergey’s Manual of Systematic Bacteriology, 2nd ed. Release 5.0 New York: Springer; 2004
    [Google Scholar]
  4. Lee KB, Liu CT, Anzai Y, Kim H, Aono T et al. The hierarchical system of the 'Alphaproteobacteria': description of Hyphomonadaceae fam. nov., Xanthobacteraceae fam. nov. and Erythrobacteraceae fam. nov. Int J Syst Evol Microbiol 2005; 55: 1907– 1919 [CrossRef] [PubMed]
    [Google Scholar]
  5. Hwang CY, Cho BC. Cohaesibacter gelatinilyticus gen. nov., sp. nov., a marine bacterium that forms a distinct branch in the order Rhizobiales, and proposal of Cohaesibacteraceae fam. nov. Int J Syst Evol Microbiol 2008; 58: 267– 277 [CrossRef] [PubMed]
    [Google Scholar]
  6. Kulichevskaya IS, Danilova OV, Tereshina VM, Kevbrin VV, Dedysh SN. Descriptions of Roseiarcus fermentans gen. nov., sp. nov., a bacteriochlorophyll a-containing fermentative bacterium related phylogenetically to alphaproteobacterial methanotrophs, and of the family Roseiarcaceae fam. nov. Int J Syst Evol Microbiol 2014; 64: 2558– 2565 [CrossRef] [PubMed]
    [Google Scholar]
  7. Wiegel J, Wilke D, Baumgarten J, Opitz R, Schlegel HG. Transfer of the nitrogen-fixing bacterium Corynebacterium autotrophicum Baumagarten, et al. to Xanthobacter gen. nov. Int J Syst Evol Microbiol 1978; 28: 573– 581
    [Google Scholar]
  8. Hiraishi A, Urata K, Satoh T. A new genus of marine budding phototrophic bacteria, Rhodobium gen. nov., which includes Rhodobium orientis sp. nov. and Rhodobium marinum comb. nov. Int J Syst Bacteriol 1995; 45: 226– 234 [CrossRef] [PubMed]
    [Google Scholar]
  9. Patt TE, Cole GC, Hanson RS. Methylobacterium, a new genus of facultatively methylotrophic bacteria. Int J Syst Bacteriol 1976; 26: 226– 229 [CrossRef]
    [Google Scholar]
  10. Jordan DC. Transfer of Rhizobium japonicum Buchanan 1980 to Bradyrhizobium gen. nov., a genus of slow-growing, root nodule bacteria from leguminous plants. Int J Syst Bacteriol 1982; 32: 136– 139 [CrossRef]
    [Google Scholar]
  11. Lafay B, Burdon JJ. Molecular diversity of legume root-nodule bacteria in Kakadu National Park, Northern Territory, Australia. PLoS One 2007; 2: e277 [CrossRef] [PubMed]
    [Google Scholar]
  12. Dahal RH, Kim J. Microvirga soli sp. nov., a novel alphaproteobacterium isolated from soil. Int J Syst Evol Microbiol 2017; 67: 127– 132 [CrossRef] [PubMed]
    [Google Scholar]
  13. Frank JA, Reich CI, Sharma S, Weisbaum JS, Wilson BA et al. Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. Appl Environ Microbiol 2008; 74: 2461– 2470 [CrossRef] [PubMed]
    [Google Scholar]
  14. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67: 1613– 1617 [CrossRef] [PubMed]
    [Google Scholar]
  15. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007; 23: 2947– 2948 [CrossRef] [PubMed]
    [Google Scholar]
  16. Hall TA. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 1999; 41: 95– 98
    [Google Scholar]
  17. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30: 2725– 2729 [CrossRef] [PubMed]
    [Google Scholar]
  18. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4: 406– 425 [CrossRef] [PubMed]
    [Google Scholar]
  19. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17: 368– 376 [CrossRef] [PubMed]
    [Google Scholar]
  20. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20: 406– 416 [CrossRef]
    [Google Scholar]
  21. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16: 111– 120 [CrossRef] [PubMed]
    [Google Scholar]
  22. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39: 783– 791 [CrossRef] [PubMed]
    [Google Scholar]
  23. Yarza P, Richter M, Peplies J, Euzeby J, Amann R et al. The All-Species Living Tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. Syst Appl Microbiol 2008; 31: 241– 250 [CrossRef] [PubMed]
    [Google Scholar]
  24. Doetsch RN. Determinative methods of light microscopy. In Gerhardt P. (editor) Manual of Methods for General Bacteriology Washington, DC, USA: American Society for Microbiology; 1981; pp. 21– 33
    [Google Scholar]
  25. Breznak JA, Costilow RN. Physicochemical factors in growth. In Beveridge TJ, Breznak JA, Marzluf GA, Schmidt TM, Snyder LR et al. (editors) Methods for General and Molecular Bacteriology, 3rd ed. Washington, DC: American Society for Microbiology; 2007; pp. 309– 329
    [Google Scholar]
  26. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC, USA: American Society for Microbiology; 1994; pp. 607– 654
    [Google Scholar]
  27. Dahal RH, Kim J. Rhabdobacter roseus gen. nov., sp. nov., isolated from soil. Int J Syst Evol Microbiol 2016; 66: 308– 314 [CrossRef] [PubMed]
    [Google Scholar]
  28. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  29. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2: 233– 241 [CrossRef]
    [Google Scholar]
  30. Collins MD, Jones D. Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication. Microbiol Rev 1981; 45: 316– 354 [PubMed]
    [Google Scholar]
  31. Komagata K, Suzuki K. Lipids and cell wall analysis in bacterial systematics. Methods Microbiol 1987; 19: 161– 203 [Crossref]
    [Google Scholar]
  32. Wilson K. Preparation of genomic DNA from bacteria. In Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG et al. (editors) Current Protocols in Molecular Biology NY: John Wiley and Sons, Inc; 1997; pp. 241– 245
    [Google Scholar]
  33. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989; 39: 159– 167 [CrossRef]
    [Google Scholar]
  34. Staley JT. Prosthecomicrobium and Ancalomicrobium: new prosthecate freshwater bacteria. J Bacteriol 1968; 95: 1921– 1942 [PubMed]
    [Google Scholar]
  35. Im WT, Yokota A, Kim MK, Lee ST. Kaistia adipata gen. nov., sp. nov., a novel alpha-proteobacterium. J Gen Appl Microbiol 2004; 50: 249– 254 [PubMed] [Crossref]
    [Google Scholar]
  36. Manickam N, Pareek S, Kaur I, Singh NK, Mayilraj S. Nitratireductor lucknowense sp. nov., a novel bacterium isolated from a pesticide contaminated soil. Antonie van Leeuwenhoek 2012; 101: 125– 131 [CrossRef] [PubMed]
    [Google Scholar]
  37. Staley JT. Prosthecomicrobium hirschii, a new species in a redefined genus. Int J Syst Bacteriol 1984; 34: 304– 308 [CrossRef]
    [Google Scholar]
  38. Tóth EM, Vengring A, Homonnay ZG, Kéki Z, Spröer C et al. Phreatobacter oligotrophus gen. nov., sp. nov., an alphaproteobacterium isolated from ultrapure water of the water purification system of a power plant. Int J Syst Evol Microbiol 2014; 64: 839– 845 [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002772
Loading
/content/journal/ijsem/10.1099/ijsem.0.002772
Loading

Data & Media loading...

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error