1887

Abstract

A yellow-pigmented, Gram-stain-negative, strictly aerobic, catalase-negative and oxidase-positive bacterium, designated strain HR-AY, was isolated from a water sample of the Han River. Cells were non-motile rods without flagella. Growth was observed at 5–30 °C (optimum, 20 °C), pH 5–9 (optimum, pH 7) and 0 % NaCl. The major respiratory quinone was menaquinone-6. Strain HR-AY did not produce flexirubin-type pigments. The major fatty acids were summed feature 3 (comprising C16 : 1ω7c and/or C16 : 1ω6c), anteiso-C15 : 0, iso-C15 : 0 and C16 : 0. The polar lipids comprised phosphatidylethanolamine and an unidentified phosphoamino lipid as major polar lipids, and four unidentified lipids were also detected as minor lipids. The DNA G+C content of strain HR-AY was 34.4 mol%. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain HR-AY belonged to the family Flavobacteriaceae in the phylum Bacteroidetes , and formed a phylogenic lineage with members of the genus Flavobacterium . The 16S rRNA gene sequence similarity showed that strain HR-AY was most closely related to Flavobacterium chungbukense CS100 (97.91 %) and Flavobacterium glaciei 0499 (97.74 %). Based on these results, strain HR-AY represents a novel species of the genus Flavobacterium , for which the name Flavobacterium alvei sp. nov. is proposed. The type strain is HR-AY (=KACC 19407=JCM 32264).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002768
2018-04-20
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/6/1919.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002768&mimeType=html&fmt=ahah

References

  1. Bergey DH, Harrison FC, Breed RS, Hammer BW, Huntoon FM et al. Genus II. Flavobacterium gen. nov. In Bergey’s Manual of Determinative Bacteriology, 1st ed. Baltimore: Williams & Wilkins; 1923; pp. 97– 117
    [Google Scholar]
  2. Bernardet J-F, Segers P, Vancanneyt M, Berthe F, Kersters K et al. Cutting a Gordian Knot: emended classification and description of the genus Flavobacterium, emended description of the family Flavobacteriaceae, and proposal of Flavobacterium hydatis nom. nov. (Basonym, Cytophaga aquatilis Strohl and Tait 1978). Int J Syst Bacteriol 1996; 46: 128– 148 [CrossRef]
    [Google Scholar]
  3. Bernardet JF, Bowman JP. The genus Flavobacterium. In Whitman WB, Parte AC. (editors) Bergey’s Manual of Systematic Bacteriology, 2nd ed.vol. 4 New York, Dordrecht, Heidelberg, London: Springer; 2010; pp. 112– 155
    [Google Scholar]
  4. Lee SH, Kim JM, Lee JR, Park W, Jeon CO. Flavobacterium fluvii sp. nov., isolated from stream sediment. Int J Syst Evol Microbiol 2010; 60: 353– 357 [CrossRef] [PubMed]
    [Google Scholar]
  5. Bu JH, Cha CJ. Flavobacterium foetidum sp. nov., isolated from ginseng soil. Int J Syst Evol Microbiol 2018; 68: 616– 622 [CrossRef] [PubMed]
    [Google Scholar]
  6. Zhang G, Xian W, Chu Q, Yang J, Liu W et al. Flavobacterium terriphilum sp. nov., isolated from soil. Int J Syst Evol Microbiol 2016; 66: 4276– 4281 [CrossRef] [PubMed]
    [Google Scholar]
  7. Zhou MY, Zhang XY, Yang XD, Zhang YJ, He HL et al. Flavobacterium ardleyense sp. nov., isolated from Antarctic soil. Int J Syst Evol Microbiol 2017; 67: 3996– 4001 [CrossRef] [PubMed]
    [Google Scholar]
  8. Ahn JH, Kim TW, Kim TS, Joung Y, Kim SB. Flavobacterium fluminis sp. nov. to accommodate an aerobic, halotolerant and gliding flavobacterium isolated from freshwater. Int J Syst Evol Microbiol 2017; 67: 3117– 3121 [CrossRef] [PubMed]
    [Google Scholar]
  9. Chen WM, Su CL, Sheu SY. Flavobacterium dispersum sp. nov., isolated from a freshwater spring. Int J Syst Evol Microbiol 2017; 67: 4416– 4423 [CrossRef] [PubMed]
    [Google Scholar]
  10. Ekwe AP, Kim SB. Flavobacterium commune sp. nov., isolated from freshwater and emended description of Flavobacterium seoulense. Int J Syst Evol Microbiol 2018; 68: 93– 98 [CrossRef] [PubMed]
    [Google Scholar]
  11. Park M, Nam GG, Kim S, Jeon HT, Joung Y et al. Flavobacterium chuncheonense sp. nov. and Flavobacterium luteum sp. nov., isolated from a freshwater lake. Int J Syst Evol Microbiol 2017; 67: 4409– 4415 [CrossRef] [PubMed]
    [Google Scholar]
  12. Li DD, Liu C, Zhang YQ, Wang XJ, Wang N et al. Flavobacterium arcticum sp. nov., isolated from Arctic seawater. Int J Syst Evol Microbiol 2017; 67: 1070– 1074 [CrossRef] [PubMed]
    [Google Scholar]
  13. Du J, Yi TH. Flavobacterium tyrosinilyticum sp. nov., isolated from the rhizosphere of wild strawberry. Int J Syst Evol Microbiol 2016; 66: 2629– 2634 [CrossRef] [PubMed]
    [Google Scholar]
  14. Moya G, Yan ZF, Trinh H, Won KH, Yang JE et al. Flavobacterium hibisci sp. nov., isolated from the rhizosphere of Hibiscus syriacus L. Int J Syst Evol Microbiol 2017; 67: 537– 542 [CrossRef] [PubMed]
    [Google Scholar]
  15. Zhang Y, Jiang F, Chang X, Qiu X, Ren L et al. Flavobacterium collinsense sp. nov., isolated from a till sample of an Antarctic glacier. Int J Syst Evol Microbiol 2016; 66: 172– 177 [CrossRef] [PubMed]
    [Google Scholar]
  16. Chaudhary DK, Kim J. Flavobacterium naphthae sp. nov., isolated from oil-contaminated soil. Int J Syst Evol Microbiol 2018; 68: 305– 309 [CrossRef] [PubMed]
    [Google Scholar]
  17. Feng Q, Han L, Nogi Y, Hong Q, Lv J. Flavobacterium lutivivi sp. nov., isolated from activated sludge. Int J Syst Evol Microbiol 2016; 66: 1394– 1400 [CrossRef] [PubMed]
    [Google Scholar]
  18. Zhang B, Liu ZQ, Zheng YG. Flavobacterium quisquiliarum sp. nov., isolated from activated sludge. Int J Syst Evol Microbiol 2017; 67: 3965– 3970 [CrossRef] [PubMed]
    [Google Scholar]
  19. Kim JJ, Kanaya E, Weon HY, Koga Y, Takano K et al. Flavobacterium compostarboris sp. nov., isolated from leaf-and-branch compost, and emended descriptions of Flavobacterium hercynium, Flavobacterium resistens and Flavobacterium johnsoniae. Int J Syst Evol Microbiol 2012; 62: 2018– 2024 [CrossRef] [PubMed]
    [Google Scholar]
  20. Lee Y, Jeon CO. Sphingomonas frigidaeris sp. nov., isolated from an air conditioning system. Int J Syst Evol Microbiol 2017; 67: 3907– 3912 [CrossRef] [PubMed]
    [Google Scholar]
  21. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67: 1613– 1617 [CrossRef] [PubMed]
    [Google Scholar]
  22. Nawrocki EP, Eddy SR. Query-dependent banding (QDB) for faster RNA similarity searches. PLoS Comput Biol 2007; 3: e56 [CrossRef] [PubMed]
    [Google Scholar]
  23. Felsenstein J. PHYLIP (Phylogeny Inference Package), Version 3.6a Seattle: Department of Genetics, University of Washington, WA, USA: 2002
    [Google Scholar]
  24. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014; 30: 1312– 1313 [CrossRef] [PubMed]
    [Google Scholar]
  25. Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64: 346– 351 [CrossRef] [PubMed]
    [Google Scholar]
  26. Rosselló-Móra R, Amann R. Past and future species definitions for Bacteria and Archaea. Syst Appl Microbiol 2015; 38: 209– 216 [CrossRef] [PubMed]
    [Google Scholar]
  27. Stackebrandt E, Ebers J. Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 2006; 33: 152– 155
    [Google Scholar]
  28. Lányí B. Classical and rapid identification methods for medically important bacteria. Methods Microbiol 1988; 19: 1– 67 [Crossref]
    [Google Scholar]
  29. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P. (editor) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994; pp. 607– 654
    [Google Scholar]
  30. Fautz E, Reichenbach H. A simple test for flexirubin-type pigments. FEMS Microbiol Lett 1980; 8: 87– 91 [CrossRef]
    [Google Scholar]
  31. Komagata K, Suzuki K. Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 1988; 19: 161– 208 [Crossref]
    [Google Scholar]
  32. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  33. Minnikin DE, Patel PV, Alshamaony L, Goodfellow M. Polar lipid composition in the classification of Nocardia and related bacteria. Int J Syst Bacteriol 1977; 27: 104– 117 [CrossRef]
    [Google Scholar]
  34. Lim CS, Oh YS, Lee JK, Park AR, Yoo JS et al. Flavobacterium chungbukense sp. nov., isolated from soil. Int J Syst Evol Microbiol 2011; 61: 2734– 2739 [CrossRef] [PubMed]
    [Google Scholar]
  35. Zhang DC, Wang HX, Liu HC, Dong XZ, Zhou PJ. Flavobacterium glaciei sp. nov., a novel psychrophilic bacterium isolated from the China No.1 glacier. Int J Syst Evol Microbiol 2006; 56: 2921– 2925 [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002768
Loading
/content/journal/ijsem/10.1099/ijsem.0.002768
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error