1887

Abstract

A novel strain, designated Y1A-10 4-9-1, with Gram-stain-positive and rod-shaped cells, was isolated from paddy soil in Yingtan, Jiangxi, China. Cells were 0.15–0.2 µm wide and 1.5–3.3 µm long. The optimal growth temperature was 30 °C and the optimal pH was 7.0. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the novel strain is closely related to JCM 11933 (98.57 %). The genomic DNA G+C content was 63.9 mol%. The predominant menaquinone was MK-9(H) and -diaminopimelic acid was present in the cell-wall peptidoglycan layer. The major polar lipids were diphosphatidylglycerol, one unidentified phospholipid and two unidentified lipids. The dominant cellular fatty acids detected were anteiso-C and iso-C. The phylogenetic and phenotypic results supported that strain Y1A-10 4-9-1 is a novel species of the genus , for which the name sp. nov. is proposed. The type strain is Y1A-10 4-9-1 (=CCTCC AB 2016249=KCTC 15566=LMG 29810).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002766
2018-06-01
2020-01-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/6/1914.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002766&mimeType=html&fmt=ahah

References

  1. Akasaka H, Ueki A, Hanada S, Kamagata Y, Ueki K. Propionicimonas paludicola gen. nov., sp. nov., a novel facultatively anaerobic, Gram-positive, propionate-producing bacterium isolated from plant residue in irrigated rice-field soil. Int J Syst Evol Microbiol 2003;53:1991–1998 [CrossRef][PubMed]
    [Google Scholar]
  2. Bae HS, Moe WM, Yan J, Tiago I, da Costa MS et al. Propionicicella superfundia gen. nov., sp. nov., a chlorosolvent-tolerant propionate-forming, facultative anaerobic bacterium isolated from contaminated groundwater. Syst Appl Microbiol 2006;29:404–413 [CrossRef][PubMed]
    [Google Scholar]
  3. Nielsen JL, Nguyen H, Meyer RL, Nielsen PH. Identification of glucose-fermenting bacteria in a full-scale enhanced biological phosphorus removal plant by stable isotope probing. Microbiology 2012;158:1818–1825 [CrossRef][PubMed]
    [Google Scholar]
  4. Zucchi TD, Rossi GD, Cônsoli FL. Characterization of a β-amylase from Propionicimonas sp. ENT-18 ectosymbiont of Acromyrmex subterraneus brunneus. Ann Microbiol 2011;61:985–990 [CrossRef]
    [Google Scholar]
  5. Zucchi TD, Almeida LG, Moraes LAB, Cônsoli FL. Albocycline, the main bioactive compound from Propionicimonas sp. ENT-18 against Sclerotinia sclerotiorum. Ind Crops Prod 2014;52:264–268 [CrossRef]
    [Google Scholar]
  6. Alonso-Vega P, Carro L, Martínez-Molina E, Trujillo ME. Auraticoccus monumenti gen. nov., sp. nov., an actinomycete isolated from a deteriorated sandstone monument. Int J Syst Evol Microbiol 2011;61:1098–1103 [CrossRef][PubMed]
    [Google Scholar]
  7. Stackebrandt E. The family Propionibacteriaceae: the genus Propionibacterium. In Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E et al. (editors) The Prokaryotes: a Handbook on the Biology of Bacteria New York: Springer; 2006; pp.400–418
    [Google Scholar]
  8. Vorobjeva LI. The genus Propionibacterium. In Vorobjeva LI. (editor) Propionibacteria The Netherlands: Kluwer Academic Publishers; 1999; pp.4–46[Crossref]
    [Google Scholar]
  9. Zucchi TD, Almeida LG, Dossi FCA, Cônsoli FL. Secondary metabolites produced by Propionicimonas sp. (ENT-18) induce histological abnormalities in the sclerotia of Sclerotinia sclerotiorum. BioControl 2010;55:811–819 [CrossRef]
    [Google Scholar]
  10. Zhou GW, Yang XR, Li H, Marshall CW, Zheng BX et al. Electron shuttles enhance anaerobic ammonium oxidation coupled to iron(III) reduction. Environ Sci Technol 2016;50:9298–9307 [CrossRef][PubMed]
    [Google Scholar]
  11. Kappler A. Geomicrobiological cycling of iron. Rev Mineral Geochem 2005;59:85–108 [CrossRef]
    [Google Scholar]
  12. Lovley DR, Phillips EJ. Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Appl Environ Microbiol 1988;54:1472–1480[PubMed]
    [Google Scholar]
  13. Cornell RM, Schwertmann U. The Iron Oxides New York: VCH, Weinheim; 1996
    [Google Scholar]
  14. Baker GC, Smith JJ, Cowan DA. Review and re-analysis of domain-specific 16S primers. J Microbiol Methods 2003;55:541–555 [CrossRef][PubMed]
    [Google Scholar]
  15. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67:1613–1617 [CrossRef][PubMed]
    [Google Scholar]
  16. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007;23:2947–2948 [CrossRef][PubMed]
    [Google Scholar]
  17. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013;30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  18. Tamaoka J, Komagata K. Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 1984;25:125–128 [CrossRef]
    [Google Scholar]
  19. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987;37:463–464 [CrossRef]
    [Google Scholar]
  20. Buck JD. Nonstaining (KOH) method for determination of gram reactions of marine bacteria. Appl Environ Microbiol 1982;44:992[PubMed]
    [Google Scholar]
  21. Cui L, Chen P, Chen S, Yuan Z, Yu C et al. In situ study of the antibacterial activity and mechanism of action of silver nanoparticles by surface-enhanced Raman spectroscopy. Anal Chem 2013;85:5436–5443 [CrossRef][PubMed]
    [Google Scholar]
  22. Estevez-Canales M, Kuzume A, Borjas Z, Füeg M, Lovley D et al. A severe reduction in the cytochrome C content of Geobacter sulfurreducens eliminates its capacity for extracellular electron transfer. Environ Microbiol Rep 2015;7:219–226 [CrossRef][PubMed]
    [Google Scholar]
  23. Mayr R, Busse HJ, Worliczek HL, Ehling-Schulz M, Scherer S. Ornithinibacillus gen. nov., with the species Ornithinibacillus bavariensis sp. nov. and Ornithinibacillus californiensis sp. nov. Int J Syst Evol Microbiol 2006;56:1383–1389 [CrossRef][PubMed]
    [Google Scholar]
  24. Yu Z, Wen J, Yang G, Liu J, Zhou S. Compostibacillus humi gen. nov., sp. nov., a member of the family Bacillaceae, isolated from sludge compost. Int J Syst Evol Microbiol 2015;65:346–352 [CrossRef][PubMed]
    [Google Scholar]
  25. Hiraishi A. Respiratory quinone profiles as tools for identifying different bacterial populations in activated sludge. J Gen Appl Microbiol 1988;34:39–56 [CrossRef]
    [Google Scholar]
  26. Staneck JL, Roberts GD. Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 1974;28:226–231[PubMed]
    [Google Scholar]
  27. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984;2:233–241 [CrossRef]
    [Google Scholar]
  28. Shintani T, Liu WT, Hanada S, Kamagata Y, Miyaoka S et al. Micropruina glycogenica gen. nov., sp. nov., a new Gram-positive glycogen-accumulating bacterium isolated from activated sludge. Int J Syst Evol Microbiol 2000;50:201–207 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002766
Loading
/content/journal/ijsem/10.1099/ijsem.0.002766
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error