1887

Abstract

A novel hyperthermophilic, acidophilic and facultatively anaerobic archaeon, strain KD-1, was isolated from an acidic hot spring in Indonesia and characterized with the phylogenetically related species Kurosawa . 1998, Suzuki ., 2002 and Jan . 1999. Cells of KD-1 were irregular cocci with diameters of 0.9–1.3 µm. The strain grew at 60–90 °C (optimum 80–85 °C), pH 2.5–6.0 (optimum pH 3.5–4.0) and 0–1.0 % (w/v) NaCl concentration. KD-1 grew anaerobically in the presence of S (headspace: H/CO) and FeCl (headspace: N). Under aerobic conditions, chemolithoautotrophic growth occurred on S, pyrite, KSO, NaSO and H. This strain utilized various complex substrates, such as yeast extract, but did not grow on sugars and amino acids as the sole carbon source. The main core lipids were calditoglycerocaldarchaeol and caldarchaeol. The DNA G+C content was 30.6 mol%. Analyses of phylogenetic trees based on 16S rRNA and 23S rRNA genes indicated that KD-1 formed an independent lineage near TA-1, 7 and YM1. On the basis of the results of morphological, physiological, chemotaxonomic and phylogenetic analyses, KD-1 represents a novel species of the genus Kurosawa 1998, for which the name sp. nov. is proposed. The type strain is KD-1 (=JCM 32117=InaCC Ar81). Based on the data, we also propose the reclassification of Suzuki , 2002 as comb. nov. (type strain 7=JCM 10545=DSM 16993).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002765
2018-06-01
2020-01-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/6/1907.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002765&mimeType=html&fmt=ahah

References

  1. Stetter KO. Sulfolobales ord. nov. In validation of the publication of new names and new combinations previously effectively published outside the IJSB, List No. 31. Int J Syst Bacteriol 1989;39:495–497[Crossref]
    [Google Scholar]
  2. Huber G, Spinnler C, Gambacorta A, Stetter KO. Metallosphaera sedula gen, and sp. nov. represents a new genus of aerobic, metal-mobilizing, thermoacidophilic archaebacteria. Syst Appl Microbiol 1989;12:38–47 [CrossRef]
    [Google Scholar]
  3. Sakai HD, Kurosawa N. Sulfodiicoccus acidiphilus gen. nov., sp. nov., a sulfur-inhibited thermoacidophilic archaeon belonging to the order Sulfolobales isolated from a terrestrial acidic hot spring. Int J Syst Evol Microbiol 2017;67:1880–1886 [CrossRef][PubMed]
    [Google Scholar]
  4. Brock TD, Brock KM, Belly RT, Weiss RL. Sulfolobus: a new genus of sulfur-oxidizing bacteria living at low pH and high temperature. Arch Mikrobiol 1972;84:54–68 [CrossRef][PubMed]
    [Google Scholar]
  5. Segerer A, Neuner A, Kristjansson JK, Stetter KO. Acidianus infernus gen. nov., sp. nov., and Acidianus brierleyi comb. nov.: facultatively aerobic, extremely acidophilic thermophilic sulfur-metabolizing archaebacteria. Int J Syst Bacteriol 1986;36:559–564 [CrossRef]
    [Google Scholar]
  6. Kurosawa N, Itoh YH, Iwai T, Sugai A, Uda I et al. Sulfurisphaera ohwakuensis gen. nov., sp. nov., a novel extremely thermophilic acidophile of the order Sulfolobales. Int J Syst Bacteriol 1998;48:451–456 [CrossRef][PubMed]
    [Google Scholar]
  7. Segerer AH, Trincone A, Gahrtz M, Stetter KO. Stygiolobus azoricus gen. nov., sp. nov. represents a novel genus of anaerobic, extremely thermoacidophilic archaebacteria of the order Sulfolobales. Int J Syst Bacteriol 1991;41:495–501 [CrossRef]
    [Google Scholar]
  8. Sakai HD, Kurosawa N. Saccharolobus caldissimus gen. nov., sp. nov., a facultatively anaerobic iron-reducing hyperthermophilic archaeon isolated from an acidic terrestrial hot spring, and reclassification of Sulfolobus solfataricus as Saccharolobus solfataricus comb. nov. and Sulfolobus shibatae as Saccharolobus shibatae comb. nov. Int J Syst Evol Microbiol 2018;68:1271–1278 [CrossRef][PubMed]
    [Google Scholar]
  9. Jan RL, Wu J, Chaw SM, Tsai CW, Tsen SD. A novel species of thermoacidophilic archaeon, Sulfolobus yangmingensis sp. nov. Int J Syst Bacteriol 1999;49:1809–1816 [CrossRef][PubMed]
    [Google Scholar]
  10. Suzuki T, Iwasaki T, Uzawa T, Hara K, Nemoto N et al. Sulfolobus tokodaii sp. nov. (f. Sulfolobus sp. strain 7), a new member of the genus Sulfolobus isolated from Beppu Hot Springs, Japan. Extremophiles 2002;6:39–44 [CrossRef][PubMed]
    [Google Scholar]
  11. Inatomi K-I, Ohba M, Oshima T. Chemical properties of proteinaceus cell wall from an acido-thermophile, Sulfolobus acidocaldarius. Chem Lett 1983;12:1191–1194[Crossref]
    [Google Scholar]
  12. Balch WE, Fox GE, Magrum LJ, Woese CR, Wolfe RS. Methanogens: reevaluation of a unique biological group. Microbiol Rev 1979;43:260–296[PubMed]
    [Google Scholar]
  13. Huber G, Drobner E, Huber H, Stetter KO. Growth by aerobic oxidation of molecular hydrogen in archaea—a metabolic property so far unknown for this domain. Syst Appl Microbiol 1992;15:502–504 [CrossRef]
    [Google Scholar]
  14. Sugai A, Uda I, Itoh YH, Itoh T. The core lipid composition of the 17 strains of hyperthermophilic archaea, Thermococcales. J Oleo Sci 2004;53:41–44 [CrossRef]
    [Google Scholar]
  15. Marmur J. A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 1961;3:208–218 [CrossRef]
    [Google Scholar]
  16. Katayama-Fujimura Y, Komatsu Y, Kuraishi H, Kaneko T. Estimation of DNA base composition by high performance liquid chromatography of its nuclease P1 hydrolysate. Agric Biol Chem 1984;48:3169–3172 [CrossRef]
    [Google Scholar]
  17. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012;62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  18. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013;30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  19. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425 [CrossRef][PubMed]
    [Google Scholar]
  20. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  21. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980;16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  22. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39:783–791 [CrossRef][PubMed]
    [Google Scholar]
  23. Nishihara M, Morii H, Koga Y. Structure determination of a quartet of novel tetraether lipids from Methanobacterium thermoautotrophicum. J Biochem 1987;101:1007–1015 [CrossRef][PubMed]
    [Google Scholar]
  24. Sugai A, Sakuma R, Fukuda I, Kurosawa N, Itoh YH et al. The structure of the core polyol of the ether lipids from Sulfolobus acidocaldarius. Lipids 1995;30:339–344 [CrossRef][PubMed]
    [Google Scholar]
  25. Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014;64:346–351 [CrossRef][PubMed]
    [Google Scholar]
  26. Parker CT, Tindall BJ, Garrity GM. International Code of Nomenclature of Prokaryotes. Prokaryotic Code (2008 Revision). Int J Syst Evol Microbiol 2015, DOI: 10.1099/ijsem.0.000778.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002765
Loading
/content/journal/ijsem/10.1099/ijsem.0.002765
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error