1887

Abstract

A Gram-variable, short-rod-shaped, motile, spore-forming, strictly aerobic and alkaliresistant bacterium, designed strain J-3, was isolated from farmland soil sampled in Yancheng city, Jiangsu province, China. Optimal growth occurred at 30 °C, pH 7.0–8.0 and 0.5 % (w/v) NaCl. Phylogenetic analysis based on the 16S rRNA gene sequences showed that strain J-3 was most closely related to HZ1 (96.8 %), followed by KIT00200-70066-1 (94.7 %). The major cellular fatty acids were anteiso-C and C. The dominant respiratory quinone was menaquinone-7 and the DNA G+C content was 41.2 mol%. The major polar lipids of strain J-3 were aminolipid, phospholipid, diphosphatidylglycerol, phosphatidylglycerol, phosphoaminolipid and phosphatidylethanolamine. The diagnostic diamino acid of the cell-wall peptidoglycan was -diaminopimelic acid. On the basis of genotypic and phenotypic data, strain J-3 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is J-3 (=KCTC 33926=CGMCC 1.16455).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002763
2018-06-01
2020-01-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/6/1902.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002763&mimeType=html&fmt=ahah

References

  1. Ash C, Priest FG, Collins MD. Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Proposal for the creation of a new genus Paenibacillus. Antonie van Leeuwenhoek 1993;64:253–260[PubMed][Crossref]
    [Google Scholar]
  2. Montes MJ, Mercadé E, Bozal N, Guinea J. Paenibacillus antarcticus sp. nov., a novel psychrotolerant organism from the Antarctic environment. Int J Syst Evol Microbiol 2004;54:1521–1526 [CrossRef][PubMed]
    [Google Scholar]
  3. Smerda J, Sedlácek I, Pácová Z, Durnová E, Smísková A et al. Paenibacillus mendelii sp. nov., from surface-sterilized seeds of Pisum sativum L. Int J Syst Evol Microbiol 2005;55:2351–2354 [CrossRef][PubMed]
    [Google Scholar]
  4. Jeon CO, Lim JM, Lee SS, Chung BS, Park DJ et al. Paenibacillus harenae sp. nov., isolated from desert sand in China. Int J Syst Evol Microbiol 2009;59:13–17 [CrossRef][PubMed]
    [Google Scholar]
  5. Bae JY, Kim KY, Kim JH, Lee K, Cho JC et al. Paenibacillus aestuarii sp. nov., isolated from an estuarine wetland. Int J Syst Evol Microbiol 2010;60:644–647 [CrossRef][PubMed]
    [Google Scholar]
  6. Kämpfer P, Falsen E, Lodders N, Martin K, Kassmannhuber J et al. Paenibacillus chartarius sp. nov., isolated from a paper mill. Int J Syst Evol Microbiol 2012;62:1342–1347 [CrossRef][PubMed]
    [Google Scholar]
  7. Carro L, Flores-Félix JD, Cerda-Castillo E, Ramírez-Bahena MH, Igual JM et al. Paenibacillus endophyticus sp. nov., isolated from nodules of Cicer arietinum. Int J Syst Evol Microbiol 2013;63:4433–4438 [CrossRef][PubMed]
    [Google Scholar]
  8. Li J, Lu Q, Liu T, Zhou S, Yang G et al. Paenibacillus guangzhouensis sp. nov., an Fe(III)- and humus-reducing bacterium from a forest soil. Int J Syst Evol Microbiol 2014;64:3891–3896 [CrossRef][PubMed]
    [Google Scholar]
  9. Kittiwongwattana C, Thawai C. Paenibacillus lemnae sp. nov., an endophytic bacterium of duckweed (Lemna aequinoctialis). Int J Syst Evol Microbiol 2015;65:107–112 [CrossRef][PubMed]
    [Google Scholar]
  10. Sun Y, Guo Z, Zhao Q, Gao Q, Xie Q et al. Paenibacillus ripae sp. nov., isolated from bank side soil. Int J Syst Evol Microbiol 2015;65:4757–4762 [CrossRef][PubMed]
    [Google Scholar]
  11. Kämpfer P, Busse HJ, McInroy JA, Hu CH, Kloepper JW et al. Paenibacillus rhizoplanae sp. nov., isolated from the rhizosphere of Zea mays. Int J Syst Evol Microbiol 2017;67:1058–1063 [CrossRef][PubMed]
    [Google Scholar]
  12. Priest FG. Genus 1 Paenibacillus. In Vos P, Garrity G, Jones D, Kreig NR, Ludwig W. (editors) Bergey’s Manual of Systematic Bacteriology, vol. 3. The Firmicutes New York, NY: Springer; 2009; pp.269–295
    [Google Scholar]
  13. Wang L, Baek SH, Cui Y, Lee HG, Lee ST. Paenibacillus sediminis sp. nov., a xylanolytic bacterium isolated from a tidal flat. Int J Syst Evol Microbiol 2012;62:1284–1288 [CrossRef][PubMed]
    [Google Scholar]
  14. Tidjani Alou M, Rathored J, Nguyen TT, Andrieu C, Couderc C et al. Paenibacillus phocaensis sp. nov., isolated from the gut microbiota of a healthy infant. New Microbes New Infect 2017;16:13–24 [CrossRef][PubMed]
    [Google Scholar]
  15. Gerhardt P, Murray RGE, Wood WA, Krieg NR. Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994
    [Google Scholar]
  16. Skerman VBD, Bergey DH. A guide to the identification of the genera of bacteria, with methods and digests of generic characteristics. Int J Syst Evol Microbiol 1968;18:276–278
    [Google Scholar]
  17. Dong X, Cai M. Manual of Systematic and Determinative Bacteriology Beijing, China: Academic Press; 2001
    [Google Scholar]
  18. Lane DJ. 16S/23S rRNA sequencing. In Stackebrandt E, Goodfellow M. (editors) Nucleic Acid Techniques in Bacterial Systematics Chichester, UK: Wiley; 1991; pp.115–175
    [Google Scholar]
  19. Baker GC, Smith JJ, Cowan DA. Review and re-analysis of domain-specific 16S primers. J Microbiol Methods 2003;55:541–555 [CrossRef][PubMed]
    [Google Scholar]
  20. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67:1613–1617 [CrossRef][PubMed]
    [Google Scholar]
  21. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425 [CrossRef][PubMed]
    [Google Scholar]
  22. Tamura K, Peterson D, Peterson N, Stecher G, Nei M et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011;28:2731–2739 [CrossRef][PubMed]
    [Google Scholar]
  23. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013;30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  24. Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014;64:346–351 [CrossRef][PubMed]
    [Google Scholar]
  25. Kämpfer P, Kroppenstedt RM. Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 1996;42:989–1005 [CrossRef]
    [Google Scholar]
  26. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  27. Tindall BJ. Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 1990;66:199–202 [CrossRef]
    [Google Scholar]
  28. Tindall BJ. A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 1990;13:128–130 [CrossRef]
    [Google Scholar]
  29. Collins MD. Isoprenoid quinone analyses in bacterial classification and identification. In Goodfellow M, Minnikin DE. (editors) Chemical Methods in Bacterial Systematics London: Academic Press; 1985; pp.267–284
    [Google Scholar]
  30. Nishijima M, Araki-Sakai M, Sano H. Identification of isoprenoid quinones by frit-FAB liquid chromatography–mass spectrometry for the chemotaxonomy of microorganisms. J Microbiol Methods 1997;28:113–122 [CrossRef]
    [Google Scholar]
  31. Schleifer KH. 5 Analysis of the chemical composition and primary structure of murein. Method Microbiol 1985;18:123–156[Crossref]
    [Google Scholar]
  32. Kämpfer P, Rosselló-Mora R, Falsen E, Busse HJ, Tindall BJ. Cohnella thermotolerans gen. nov., sp. nov., and classification of 'Paenibacillus hongkongensis' as Cohnella hongkongensis sp. nov. Int J Syst Evol Microbiol 2006;56:781–786 [CrossRef][PubMed]
    [Google Scholar]
  33. Kim KK, Lee KC, Yu H, Ryoo S, Park Y et al. Paenibacillus sputi sp. nov., isolated from the sputum of a patient with pulmonary disease. Int J Syst Evol Microbiol 2010;60:2371–2376 [CrossRef][PubMed]
    [Google Scholar]
  34. Marmur J. A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 1961;3:208–214 [CrossRef]
    [Google Scholar]
  35. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989;39:159–167 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002763
Loading
/content/journal/ijsem/10.1099/ijsem.0.002763
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error