1887

Abstract

The translucent white-coloured, Gram-stain-negative, aerobic, non-motile, fusiform-shaped bacterium (designated strain SY72) was isolated from waste-activated sludge. Optimal growth occurred at 30–37 °C and pH 6.0–7.0. Phylogenetic analysis based on the 16S rRNA gene sequences revealed that the novel isolate belonged to the family Rhodobacteraceae of the class Alphaproteobacteria . Strain SY72 is closely related to Tabrizicola aquatica KCTC 23724 (97.8 % 16S rRNA gene sequence similarity) and Pseudorhodobacter aquaticus DC2N1-10 (96.4 %), respectively. DNA–DNA relatedness between strain SY72 and the closest phylogenetically related strain, Tabrizicola aquatica KCTC 23724, was 18.0±0.7 %. In strain SY72, the predominant respiratory quinone was ubiquinone Q-10, and the cellular fatty acids consisted mainly of C18 : 1ω7c and C18 : 1ω7c-11 methyl. The major polar lipids were phosphatidylcholine, phosphatidylglycerol, diphosphatidylglycerol and phosphatidylethanolamine. Photoautotrophic and photoheterotrophic growth did not occur in strain SY72. Furthermore, strain SY72 did not produce photosynthetic pigments or contain the photosynthetic genes pufL and pufM, by which it differed from the phototrophic species of the family Rhodobacteraceae . On the basis of distinct phenotypic and phylogenetic properties, strain SY72 represents a novel species of the genus Tabrizicola , for which the name Tabrizicola fusiformis sp. nov. is proposed. The type strain is SY72 (=KCTC 62105=NBRC 113021).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002760
2018-04-06
2019-10-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/5/1800.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002760&mimeType=html&fmt=ahah

References

  1. Garrity GM, Bell JA, Lilburn T. Family I. Rhodobacteraceae fam. nov. In Brenner DJ, Krieg NR, Staley JT, Garrity GM. (editors) Bergey’s Manual of Systematic Bacteriology New York: Springer; 2005; pp. 161
    [Google Scholar]
  2. Pujalte MJ, Lucena T, Ruvira MA, Arahal DR, Macián MC et al. The family Rhodobacteraceae. In Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F et al. (editors) The Prokaryotes – Alphaproteobacteria and Betaproteobacteria Berlin: Springer; 2014; pp. 545– 577
    [Google Scholar]
  3. Subhash Y, Lee SS. Rhodobacter sediminis sp. nov., isolated from lagoon sediments. Int J Syst Evol Microbiol 2016; 66: 2965– 2970 [CrossRef] [PubMed]
    [Google Scholar]
  4. Simon M, Scheuner C, Meier-Kolthoff JP, Brinkhoff T, Wagner-Döbler I et al. Phylogenomics of Rhodobacteraceae reveals evolutionary adaptation to marine and non-marine habitats. ISME J 2017; 11: 1483– 1499 [CrossRef] [PubMed]
    [Google Scholar]
  5. Zheng D, Sun Y, Li H, Lu S, Shan M et al. Multistage A-O activated sludge process for paraformaldehyde wastewater treatment and microbial community structure analysis. Journal of Chemistry 2016; 2016: 7
    [Google Scholar]
  6. Wagner M, Loy A. Bacterial community composition and function in sewage treatment systems. Curr Opin Biotechnol 2002; 13: 218– 227 [PubMed] [Crossref]
    [Google Scholar]
  7. Srinivas TN, Kumar PA, Sasikala C, Ramana C, Imhoff JF. Rhodobacter vinaykumarii sp. nov., a marine phototrophic alphaproteobacterium from tidal waters, and emended description of the genus Rhodobacter. Int J Syst Evol Microbiol 2007; 57: 1984– 1987 [CrossRef] [PubMed]
    [Google Scholar]
  8. Madigan M, Martinko J. In Madigan MT, Martinko JM. (editors) Brock Biology of Microorganisms USA: Prentice Hall; 2005
    [Google Scholar]
  9. Hong X, Liu B, Zhang X, Zhao L. Comparison of microbial community structure of quinoline and indole acclimated denitrifying bioreactor. Wei Sheng Wu Xue Bao 2008; 48: 503– 507 [PubMed]
    [Google Scholar]
  10. Li AH, Liu HC, Hou WG, Zhou YG. Pseudorhodobacter sinensis sp. nov. and Pseudorhodobacter aquaticus sp. nov., isolated from crater lakes. Int J Syst Evol Microbiol 2016; 66: 2819– 2824 [CrossRef] [PubMed]
    [Google Scholar]
  11. Chen WM, Cho NT, Huang WC, Young CC, Sheu SY et al. Description of Gemmobacter fontiphilus sp. nov., isolated from a freshwater spring, reclassification of Catellibacterium nectariphilum as Gemmobacter nectariphilus comb. nov., Catellibacterium changlense as Gemmobacter changlensis comb. nov., Catellibacterium aquatile as Gemmobacter aquaticus nom. nov., Catellibacterium caeni as Gemmobacter caeni comb. nov., Catellibacterium nanjingense as Gemmobacter nanjingensis comb. nov., and emended description of the genus Gemmobacter and of Gemmobacter aquatilis. Int J Syst Evol Microbiol 2013; 63: 470– 478 [CrossRef] [PubMed]
    [Google Scholar]
  12. Imhoff JF, Caumette P. Recommended standards for the description of new species of anoxygenic phototrophic bacteria. Int J Syst Evol Microbiol 2004; 54: 1415– 1421 [CrossRef] [PubMed]
    [Google Scholar]
  13. Albuquerque L, Santos J, Travassos P, Nobre MF, Rainey FA et al. Albidovulum inexpectatum gen. nov., sp. nov., a nonphotosynthetic and slightly thermophilic bacterium from a marine hot spring that is very closely related to members of the photosynthetic genus Rhodovulum. Appl Environ Microbiol 2002; 68: 2673– 4266 [PubMed] [Crossref]
    [Google Scholar]
  14. Tarhriz V, Thiel V, Nematzadeh G, Hejazi MA, Imhoff JF et al. Tabrizicola aquatica gen. nov. sp. nov., a novel alphaproteobacterium isolated from Qurugöl Lake nearby Tabriz city, Iran. Antonie van Leeuwenhoek 2013; 104: 1205– 1215 [CrossRef] [PubMed]
    [Google Scholar]
  15. Pfennig N, Trüper HG. The family Chromatiaceae. In Balows A, Trüper HG, Dworkin M, Harder W, Schleifer KH et al. (editors) The Prokaryotes New York: Springer-Verlag; 1992; pp. 3200– 3221 [Crossref]
    [Google Scholar]
  16. Trüper HG, Pfennig N. Isolation of members of the families Chromatiaceae and Chlorobiaceae. In Starr MP, Stolp H, Trüper HG, Balows A, Schlegel HG et al. (editors) The Prokaryotes Berlin: Springer; 1981; pp. 279– 289 [Crossref]
    [Google Scholar]
  17. Chun J, Goodfellow M. A phylogenetic analysis of the genus Nocardia with 16S rRNA gene sequences. Int J Syst Bacteriol 1995; 45: 240– 245 [CrossRef] [PubMed]
    [Google Scholar]
  18. Lane DJ. 16S/23S rRNA sequencing. In Stackebrandt E, Goodfellow M. (editors) Nucleic Acid Techniques in Bacterial systematics Chichester: Wiley; pp. 115– 175
    [Google Scholar]
  19. Tank M, Thiel V, Imhoff JF. Phylogenetic relationship of phototrophic purple sulfur bacteria according to pufL and pufM genes. Int Microbiol 2009; 12: 175– 185 [PubMed]
    [Google Scholar]
  20. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67: 1613– 1617 [CrossRef] [PubMed]
    [Google Scholar]
  21. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25: 4876– 4882 [PubMed] [Crossref]
    [Google Scholar]
  22. Kimura M. (editor) The Neutral Theory of Molecular Evolution New York: Cambridge University Press; 1983; [Crossref]
    [Google Scholar]
  23. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4: 406– 425 [CrossRef] [PubMed]
    [Google Scholar]
  24. Cavalli-Sforza LL, Edwards AW. Phylogenetic analysis. Models and estimation procedures. Am J Hum Genet 1967; 19: 233– 257 [PubMed]
    [Google Scholar]
  25. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33: 1870– 1874 [CrossRef] [PubMed]
    [Google Scholar]
  26. Felsenstein J. Phylogenies and the comparative method. The American Naturalist 1985; 125: 1– 15 [Crossref]
    [Google Scholar]
  27. Ezaki T, Hashimoto Y, Yabuuchi E. Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 1989; 39: 224– 229 [Crossref]
    [Google Scholar]
  28. Stackebrandt E, Goebel BM. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology microbiology. Int J Syst Bacteriol 1994; 44: 846– 849 [Crossref]
    [Google Scholar]
  29. Tamaoka J, Komagata K. Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 1984; 25: 125– 128 [Crossref]
    [Google Scholar]
  30. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  31. Komagata K, Suzuki K. Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 1987; 19: 161– 207 [Crossref]
    [Google Scholar]
  32. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2: 233– 241 [Crossref]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002760
Loading
/content/journal/ijsem/10.1099/ijsem.0.002760
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error