1887

Abstract

A novel bacterium, designated strain CA-1, was isolated from forest soil in Kyonggi University. Cells were strictly aerobic, Gram-stain-negative, catalase-positive, oxidase-negative, non-motile, non-spore-forming, rod-shaped and red-orange-pigmented. Strain CA-1 hydrolysed casein and DNA. It was able to grow at 15–37 °C, pH 5.5–9.0 and at 0–2 % (w/v) NaCl concentration. Flexirubin-type pigments were present. Phylogenetic analysis based on its 16S rRNA gene sequence indicated that strain CA-1 formed a lineage within the family Crocinitomicaceae of the phylum Bacteroidetes that was distinct from Fluviicola hefeinensis MYL-8 (96.8 % sequence similarity) and Fluviicola taffensis DSM 16823 (96.1 %). Strain CA-1 contained menaquinone-6 as a sole respiratory quinone. The major polar lipids were phosphatidylethanolamine, unidentified aminolipids, an unidentified aminophospholipid and an unidentified lipid. The major cellular fatty acids were iso-C15 : 0, iso-C17 : 0 3-OH, C15 : 0 2-OH, summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c) and iso-C15 : 1 G. The DNA G+C content of strain CA-1 was 44.1 mol%. The polyphasic characterization revealed that strain CA-1 represents a novel species in the genus Fluviicola , for which the name Fluviicola kyonggii sp. nov. is proposed. The type strain is CA-1 (=KEMB 9005-526=KACC 19148=NBRC 112684).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002759
2018-04-12
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/6/1885.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002759&mimeType=html&fmt=ahah

References

  1. O'Sullivan LA, Rinna J, Humphreys G, Weightman AJ, Fry JC. Fluviicola taffensis gen. nov., sp. nov., a novel freshwater bacterium of the family Cryomorphaceae in the phylum 'Bacteroidetes'. Int J Syst Evol Microbiol 2005; 55: 2189– 2194 [CrossRef] [PubMed]
    [Google Scholar]
  2. Yang HX, Wang X, Liu XW, Zhang J, Yang GQ et al. Fluviicola hefeinensis sp. nov., isolated from the wastewater of a chemical factory. Int J Syst Evol Microbiol 2014; 64: 700– 704 [CrossRef] [PubMed]
    [Google Scholar]
  3. Muramatsu Y, Takahashi M, Kamakura Y, Suzuki K, Nakagawa Y. Salinirepens amamiensis gen. nov., sp. nov., a member of the family Cryomorphaceae isolated from seawater, and emended descriptions of the genera Fluviicola and Wandonia. Int J Syst Evol Microbiol 2012; 62: 2235– 2240 [CrossRef] [PubMed]
    [Google Scholar]
  4. Munoz R, Rosselló-Móra R, Amann R. Revised phylogeny of Bacteroidetes and proposal of sixteen new taxa and two new combinations including Rhodothermaeota phyl. nov. Syst Appl Microbiol 2016; 39: 281– 296 [CrossRef] [PubMed]
    [Google Scholar]
  5. Dahal RH, Kim J. Pedobacter humicola sp. nov., a member of the genus Pedobacter isolated from soil. Int J Syst Evol Microbiol 2016; 66: 2205– 2211 [CrossRef] [PubMed]
    [Google Scholar]
  6. Dahal RH, Kim J. Microvirga soli sp. nov., an alphaproteobacterium isolated from soil. Int J Syst Evol Microbiol 2017; 67: 127– 132 [CrossRef] [PubMed]
    [Google Scholar]
  7. Frank JA, Reich CI, Sharma S, Weisbaum JS, Wilson BA et al. Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. Appl Environ Microbiol 2008; 74: 2461– 2470 [CrossRef] [PubMed]
    [Google Scholar]
  8. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67: 1613– 1617 [CrossRef] [PubMed]
    [Google Scholar]
  9. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007; 23: 2947– 2948 [CrossRef] [PubMed]
    [Google Scholar]
  10. Hall TA. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 1999; 41: 95– 98
    [Google Scholar]
  11. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33: 1870– 1874 [CrossRef] [PubMed]
    [Google Scholar]
  12. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4: 406– 425 [CrossRef] [PubMed]
    [Google Scholar]
  13. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17: 368– 376 [CrossRef] [PubMed]
    [Google Scholar]
  14. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20: 406– 416 [CrossRef]
    [Google Scholar]
  15. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16: 111– 120 [CrossRef] [PubMed]
    [Google Scholar]
  16. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39: 783– 791 [CrossRef] [PubMed]
    [Google Scholar]
  17. Doetsch RN. Determinative methods of light microscopy. In Gerhardt P. (editor) Manual of Methods for General Bacteriology Washington, DC, USA: American Society for Microbiology; 1981; pp. 21– 33
    [Google Scholar]
  18. Reichenbach H. The order Cytophagales. In Balows A, Trüper HG, Dworkin M, Harder W, Schleifer KH et al. (editors) The Prokaryotes, 2nd ed.vol. 4 New York: Springer; 1992; pp. 3631– 3675 [Crossref]
    [Google Scholar]
  19. Breznak JA, Costilow RN. Physicochemical factors in growth. In Beveridge TJ, Breznak JA, Marzluf GA, Schmidt TM, Snyder LR et al. (editors) Methods for General and Molecular Bacteriology, 3rd ed. Washington, DC: American Society for Microbiology; 2007; pp. 309– 329
    [Google Scholar]
  20. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC, USA: American Society for Microbiology; 1994; pp. 607– 654
    [Google Scholar]
  21. Tindall BJ, Sikorski J, Smibert RA, Krieg NR. Phenotypic characterization and the principles of comparative systematics. In Reddy CA, Beveridge TJ, Breznak JA, Marzluf GA, Schmidt TM et al. (editors) Methods for General and Molecular Bacteriology, 3rd ed. Washington, DC: ASM Press; 2007; pp. 330– 393
    [Google Scholar]
  22. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  23. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2: 233– 241 [CrossRef]
    [Google Scholar]
  24. Collins MD, Jones D. Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication. Microbiol Rev 1981; 45: 316– 354 [PubMed]
    [Google Scholar]
  25. Komagata K, Suzuki K. Lipids and cell wall analysis in bacterial systematics. Methods Microbiol 1987; 19: 161– 203 [Crossref]
    [Google Scholar]
  26. Cheng HR, Jiang N. Extremely rapid extraction of DNA from bacteria and yeasts. Biotechnol Lett 2006; 28: 55– 59 [CrossRef] [PubMed]
    [Google Scholar]
  27. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989; 39: 159– 167 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002759
Loading
/content/journal/ijsem/10.1099/ijsem.0.002759
Loading

Data & Media loading...

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error