1887

Abstract

Gram-stain-positive, rod-shaped, non-spore forming bacteria have been isolated from flowers and the guts of adult wild bees in the families Megachilidae and Halictidae. Phylogenetic analysis of the 16S rRNA gene indicated that these bacteria belong to the genus Lactobacillus , and are most closely related to the honey-bee associated bacteria Lactobacillus kunkeei (97.0 % sequence similarity) and Lactobacillus apinorum (97.0 % sequence similarity). Phylogenetic analyses of 16S rRNA genes and six single-copy protein coding genes, in situ and in silico DNA–DNA hybridization, and fatty-acid profiling differentiates the newly isolated bacteria as three novel Lactobacillus species: Lactobacillus micheneri sp. nov. with the type strain Hlig3 (=DSM 104126,=NRRL B-65473), Lactobacillus timberlakei with the type strain HV_12 (=DSM 104128,=NRRL B-65472), and Lactobacillus quenuiae sp. nov. with the type strain HV_6 (=DSM 104127,=NRRL B-65474).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002758
2018-04-12
2019-11-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/6/1879.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002758&mimeType=html&fmt=ahah

References

  1. Moran NA, Hansen AK, Powell JE, Sabree ZL. Distinctive gut microbiota of honey bees assessed using deep sampling from individual worker bees. PLoS One 2012;7:e36393 [CrossRef][PubMed]
    [Google Scholar]
  2. Engel P, Martinson VG, Moran NA. Functional diversity within the simple gut microbiota of the honey bee. Proc Natl Acad Sci USA 2012;109:11002–11007 [CrossRef][PubMed]
    [Google Scholar]
  3. Anderson KE, Rodrigues PA, Mott BM, Maes P, Corby-Harris V. Ecological succession in the honey bee gut: shift in Lactobacillus strain dominance during early adult development. Microb Ecol 2016;71:1008–1019 [CrossRef][PubMed]
    [Google Scholar]
  4. Zheng H, Powell JE, Steele MI, Dietrich C, Moran NA. Honeybee gut microbiota promotes host weight gain via bacterial metabolism and hormonal signaling. Proc Natl Acad Sci USA 2017;114:4775–4780 [CrossRef][PubMed]
    [Google Scholar]
  5. Olofsson TC, Alsterfjord M, Nilson B, Butler E, Vásquez A. Lactobacillus apinorum sp. nov., Lactobacillus mellifer sp. nov., Lactobacillus mellis sp. nov., Lactobacillus melliventris sp. nov., Lactobacillus kimbladii sp. nov., Lactobacillus helsingborgensis sp. nov. and Lactobacillus kullabergensis sp. nov., isolated from the honey stomach of the honeybee Apis mellifera. Int J Syst Evol Microbiol 2014;64:3109–3119 [CrossRef][PubMed]
    [Google Scholar]
  6. Corby-Harris V, Maes P, Anderson KE. The bacterial communities associated with honey bee (Apis mellifera) foragers. PLoS One 2014;9:e95056 [CrossRef][PubMed]
    [Google Scholar]
  7. Anderson KE, Sheehan TH, Mott BM, Maes P, Snyder L et al. Microbial ecology of the hive and pollination landscape: bacterial associates from floral nectar, the alimentary tract and stored food of honey bees (Apis mellifera). PLoS One 2013;8:e83125 [CrossRef][PubMed]
    [Google Scholar]
  8. Endo A, Irisawa T, Futagawa-Endo Y, Takano K, du Toit M et al. Characterization and emended description of Lactobacillus kunkeei as a fructophilic lactic acid bacterium. Int J Syst Evol Microbiol 2012;62:500–504 [CrossRef][PubMed]
    [Google Scholar]
  9. Endo A, Futagawa-Endo Y, Sakamoto M, Kitahara M, Dicks LM. Lactobacillus florum sp. nov., a fructophilic species isolated from flowers. Int J Syst Evol Microbiol 2010;60:2478–2482 [CrossRef][PubMed]
    [Google Scholar]
  10. Kawasaki S, Kurosawa K, Miyazaki M, Sakamoto M, Ohkuma M et al. Lactobacillus ozensis sp. nov., isolated from mountain flowers. Int J Syst Evol Microbiol 2011;61:2435–2438 [CrossRef][PubMed]
    [Google Scholar]
  11. Kawasaki S, Kurosawa K, Miyazaki M, Yagi C, Kitajima Y et al. Lactobacillus floricola sp. nov., lactic acid bacteria isolated from mountain flowers. Int J Syst Evol Microbiol 2011;61:1356–1359 [CrossRef][PubMed]
    [Google Scholar]
  12. Techo S, Miyashita M, Shibata C, Tanaka N, Wisetkhan P et al. Lactobacillus ixorae sp. nov., isolated from a flower (West-Indian Jasmine). Int J Syst Evol Microbiol 2016;66:5500–5505 [CrossRef][PubMed]
    [Google Scholar]
  13. McFrederick QS, Rehan SM. Characterization of pollen and bacterial community composition in brood provisions of a small carpenter bee. Mol Ecol 2016;25:2302–2311 [CrossRef][PubMed]
    [Google Scholar]
  14. McFrederick QS, Thomas JM, Neff JL, Vuong HQ, Russell KA et al. Flowers and wild megachilid bees share microbes. Microb Ecol 2017;73:188–200 [CrossRef][PubMed]
    [Google Scholar]
  15. McFrederick QS, Wcislo WT, Taylor DR, Ishak HD, Dowd SE et al. Environment or kin: whence do bees obtain acidophilic bacteria?. Mol Ecol 2012;21:1754–1768 [CrossRef][PubMed]
    [Google Scholar]
  16. McFrederick QS, Wcislo WT, Hout MC, Mueller UG. Host species and developmental stage, but not host social structure, affects bacterial community structure in socially polymorphic bees. FEMS Microbiol Ecol 2014;88:398–406 [CrossRef][PubMed]
    [Google Scholar]
  17. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004;32:1792–1797 [CrossRef][PubMed]
    [Google Scholar]
  18. Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 2006;22:2688–2690 [CrossRef][PubMed]
    [Google Scholar]
  19. Coil D, Jospin G, Darling AE. A5-miseq: an updated pipeline to assemble microbial genomes from Illumina MiSeq data. Bioinformatics 2015;31:587–589 [CrossRef][PubMed]
    [Google Scholar]
  20. Aziz RK, Bartels D, Best AA, Dejongh M, Disz T et al. The RAST Server: rapid annotations using subsystems technology. BMC Genomics 2008;9:75 [CrossRef][PubMed]
    [Google Scholar]
  21. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018;68:461–466 [CrossRef][PubMed]
    [Google Scholar]
  22. Varghese NJ, Mukherjee S, Ivanova N, Konstantinidis KT, Mavrommatis K et al. Microbial species delineation using whole genome sequences. Nucleic Acids Res 2015;43:6761–6771 [CrossRef][PubMed]
    [Google Scholar]
  23. Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014;64:346–351 [CrossRef][PubMed]
    [Google Scholar]
  24. Konstantinidis KT, Ramette A, Tiedje JM. The bacterial species definition in the genomic era. Philos Trans R Soc Lond B Biol Sci 2006;361:1929–1940 [CrossRef][PubMed]
    [Google Scholar]
  25. Maeno S, Tanizawa Y, Kanesaki Y, Kubota E, Kumar H et al. Genomic characterization of a fructophilic bee symbiont Lactobacillus kunkeei reveals its niche-specific adaptation. Syst Appl Microbiol 2016;39:516–526 [CrossRef][PubMed]
    [Google Scholar]
  26. Cleenwerck I, Vandemeulebroecke K, Janssens D, Swings J. Re-examination of the genus Acetobacter, with descriptions of Acetobacter cerevisiae sp. nov. and Acetobacter malorum sp. nov. Int J Syst Evol Microbiol 2002;52:1551–1558 [CrossRef][PubMed]
    [Google Scholar]
  27. Bauer AW, Kirby WM, Sherris JC, Turck M. Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol 1966;45:493–496 [CrossRef][PubMed]
    [Google Scholar]
  28. Schön R, Groth I. Practical thin layer chromatography techniques for diaminopimelic acid and whole cell sugar analyses in the classification of environmental actinomycetes. J Basic Microbiol 2006;46:243–249 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002758
Loading
/content/journal/ijsem/10.1099/ijsem.0.002758
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error