1887

Abstract

A Gram-stain-positive, oxidase- and catalase-positive, endospore-forming, aerobic, non-motile and rod-shaped bacterium (THG-YT1) was isolated from green tea. Growth occurred at 10–40 °C (optimum, 25–30 °C), at pH 6–8 (optimum, 7) and at 0–2 % NaCl (optimum, 0 %). Based on 16S rRNA gene sequences, phylogenetic analyses showed that strain THG-YT1 formed a distinct lineage with respect to closely related genera in the family Bacillaceae . Strain THG-YT1 was most closely related to the genera within the families Pullulanibacillus , Scopulibacillus , Tuberibacillus and Caenibacillu, with levels of 16S rRNA gene sequence similarity to the type species of members of these genera of less than 95.0 %. The menaquinone was MK-7. The polar lipids were phosphatidylethanolamine, two unidentified aminophospholipids, two unidentified aminolipids and two unidentified glycolipids. The major fatty acids of strain THG-YT1 were C18 : 3 ω7c and anteiso-C17 : 0. The cell-wall peptidoglycan type was A1γ with meso-diaminopimelic acid as the diagnostic diamino acid plus alanine and glutamic acid. The cell-wall sugar was glucose. The DNA G+C content of strain THG-YT1 was determined to be 53.5 mol%. Based on the data presented here, strain THG-YT1 represents a novel species of a new genus of the family Bacillaceae , for which the name Camelliibacillus cellulosilyticus gen. nov., sp. nov. is proposed. The type strain is Camelliibacillus cellulosilyticus THG-YT1(=KACC 19471=CGMCC 1.16306).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002755
2018-04-27
2019-10-22
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/6/1867.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002755&mimeType=html&fmt=ahah

References

  1. Vos P, Garrity G, Jones D, Krieg NR, Ludwig W et al. Bergey's Manual of Systematic Bacteriology: Volume 3: The Firmicutes New York, USA: Springer Science & Business Media; 2011
    [Google Scholar]
  2. Han L, Yang G, Zhou X, Yang D, Hu P et al. Bacillus thermocopriae sp. nov., isolated from a compost. Int J Syst Evol Microbiol 2013; 63: 3024– 3029 [CrossRef] [PubMed]
    [Google Scholar]
  3. Zhao W, Zhang CL, Romanek CS, Wiegel J. Description of Caldalkalibacillus uzonensis sp. nov. and emended description of the genus Caldalkalibacillus. Int J Syst Evol Microbiol 2008; 58: 1106– 1108 [CrossRef] [PubMed]
    [Google Scholar]
  4. Rainey FA, Holley BJ, Small A. Genus I. Clostridium. In Pd Vos, Garrity GM, Jones D, Krieg NR, Ludwig W et al. (editors) Bergey's Manual of Systematic Bacteriology New York: Springer; 2009
    [Google Scholar]
  5. Cihan AC, Ozcan B, Tekin N, Cokmus C. Geobacillus thermodenitrificans subsp. calidus, subsp. nov., a thermophilic and α-glucosidase producing bacterium isolated from Kizilcahamam, Turkey. J Gen Appl Microbiol 2011; 57: 83– 92 [CrossRef] [PubMed]
    [Google Scholar]
  6. L'Haridon S, Miroshnichenko ML, Kostrikina NA, Tindall BJ, Spring S et al. Vulcanibacillus modesticaldus gen. nov., sp. nov., a strictly anaerobic, nitrate-reducing bacterium from deep-sea hydrothermal vents. Int J Syst Evol Microbiol 2006; 56: 1047– 1053 [CrossRef] [PubMed]
    [Google Scholar]
  7. Nicolaus B, Lama L, Esposito E, Manca MC, Gambacorta A et al. Bacillus thermoantarcticus sp. nov., from Mount Melbourne, Antarctica: a novel thermophilic species. Polar Biol 1996; 16: 101– 104
    [Google Scholar]
  8. Hatayama K, Shoun H, Ueda Y, Nakamura A. Tuberibacillus calidus gen. nov., sp. nov., isolated from a compost pile and reclassification of Bacillus naganoensis Tomimura et al. 1990 as Pullulanibacillus naganoensis gen. nov., comb. nov. and Bacillus laevolacticus Andersch et al. 1994 as Sporolactobacillus laevolacticus comb. nov. Int J Syst Evol Microbiol 2006; 56: 2545– 2551 [CrossRef] [PubMed]
    [Google Scholar]
  9. Yao S, Zhai L, Xin C, Liu Y, Xu L et al. Scopulibacillus daqui sp. nov., a thermophilic bacterium isolated from high temperature daqu. Int J Syst Evol Microbiol 2016; 66: 4723– 4728 [CrossRef] [PubMed]
    [Google Scholar]
  10. Tsujimoto Y, Saito R, Furuya H, Ishihara D, Sahara T et al. Caenibacillus caldisaponilyticus gen. nov., sp. nov., a thermophilic, spore-forming and phospholipid-degrading bacterium isolated from acidulocompost. Int J Syst Evol Microbiol 2016; 66: 2684– 2690 [CrossRef] [PubMed]
    [Google Scholar]
  11. Lee SD, Lee DW. Scopulibacillus darangshiensis gen. nov., sp. nov., isolated from rock. J Microbiol 2009; 47: 710– 715 [CrossRef] [PubMed]
    [Google Scholar]
  12. Tomimura E, Zeman NW, Frankiewicz JR, Teague WM. Description of Bacillus naganoensis sp. nov. Int J Syst Evol Microbiol 1990; 40: 123– 125 [CrossRef] [PubMed]
    [Google Scholar]
  13. Prasirtsak B, Thongchul N, Tolieng V, Tanasupawat S. Terrilactibacillus laevilacticus gen. nov., sp. nov., isolated from soil. Int J Syst Evol Microbiol 2016; 66: 1311– 1316 [CrossRef] [PubMed]
    [Google Scholar]
  14. Yumoto I, Yamazaki K, Sawabe T, Nakano K, Kawasaki K et al. Bacillus horti sp. nov., a new Gram-negative alkaliphilic bacillus. Int J Syst Evol Microbiol 1998; 48: 565– 571 [CrossRef] [PubMed]
    [Google Scholar]
  15. Kuhnigk T, Borst EM, Breunig A, König H, Collins MD et al. Bacillus oleronius sp. nov., a member of the hindgut flora of the termite Reticulitermes santonensis (Feytaud). Can J Microbiol 1995; 41: 699– 706 [CrossRef] [PubMed]
    [Google Scholar]
  16. Niu L, Xiong M, Zhu D, Song L, Tang T et al. Pullulanibacillus camelliae sp. nov., isolated from Pu'er tea. Int J Syst Evol Microbiol 2016; 66: 4760– 4765 [CrossRef] [PubMed]
    [Google Scholar]
  17. Niu L, Tang T, Song L, Xiong M, Tian J et al. Pullulanibacillus pueri sp. nov., isolated from Pu'er tea. Int J Syst Evol Microbiol 2015; 65: 2167– 2171 [CrossRef] [PubMed]
    [Google Scholar]
  18. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991; 173: 697– 703 [CrossRef] [PubMed]
    [Google Scholar]
  19. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67: 1613– 1617 [CrossRef] [PubMed]
    [Google Scholar]
  20. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007; 23: 2947– 2948 [CrossRef] [PubMed]
    [Google Scholar]
  21. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 1999; 41: 95– 98
    [Google Scholar]
  22. Kimura M. The Neutral Theory of Molecular Evolution Cambridge, England: Cambridge University Press; 1984
    [Google Scholar]
  23. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4: 406– 425 [CrossRef] [PubMed]
    [Google Scholar]
  24. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17: 368– 376 [CrossRef] [PubMed]
    [Google Scholar]
  25. Kluge AG, Farris JS. Quantitative phyletics and the evolution of anurans. Syst Biol 1969; 18: 1– 32 [CrossRef]
    [Google Scholar]
  26. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30: 2725– 2729 [CrossRef] [PubMed]
    [Google Scholar]
  27. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39: 783– 791 [CrossRef] [PubMed]
    [Google Scholar]
  28. Ludwig W, Strunk O, Klugbauer S, Klugbauer N, Weizenegger M et al. Bacterial phylogeny based on comparative sequence analysis. Electrophoresis 1998; 19: 554– 568 [CrossRef] [PubMed]
    [Google Scholar]
  29. Yarza P, Yilmaz P, Pruesse E, Glöckner FO, Ludwig W et al. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol 2014; 12: 635– 645 [CrossRef] [PubMed]
    [Google Scholar]
  30. Logan NA, Berge O, Bishop AH, Busse HJ, de Vos P et al. Proposed minimal standards for describing new taxa of aerobic, endospore-forming bacteria. Int J Syst Evol Microbiol 2009; 59: 2114– 2121 [CrossRef] [PubMed]
    [Google Scholar]
  31. Buck JD. Nonstaining (KOH) method for determination of gram reactions of marine bacteria. Appl Environ Microbiol 1982; 44: 992– 993 [PubMed]
    [Google Scholar]
  32. Kovacs N. Identification of Pseudomonas pyocyanea by the oxidase reaction. Nature 1956; 178: 703 [CrossRef] [PubMed]
    [Google Scholar]
  33. Yan ZF, Lin P, Chu X, Kook M, Li CT et al. Aeromicrobium halotolerans sp. nov., isolated from desert soil sample. Arch Microbiol 2016; 198: 423– 427 [CrossRef] [PubMed]
    [Google Scholar]
  34. Yan ZF, Trinh H, Moya G, Lin P, Li CT et al. Lysobacter rhizophilus sp. nov., isolated from rhizosphere soil of mugunghwa, the national flower of South Korea. Int J Syst Evol Microbiol 2016; 66: 4754– 4759 [CrossRef] [PubMed]
    [Google Scholar]
  35. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989; 39: 159– 167 [CrossRef]
    [Google Scholar]
  36. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2: 233– 241 [CrossRef]
    [Google Scholar]
  37. Collins MD, Jones D. Lipids in the classification and identification of coryneform bacteria containing peptidoglycans based on 2, 4-diaminobutyric acid. J Appl Bacteriol 1980; 48: 459– 470 [CrossRef]
    [Google Scholar]
  38. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  39. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977; 100: 221– 230 [CrossRef] [PubMed]
    [Google Scholar]
  40. Hu HY, Lim BR, Goto N, Fujie K. Analytical precision and repeatability of respiratory quinones for quantitative study of microbial community structure in environmental samples. J Microbiol Methods 2001; 47: 17– 24 [PubMed] [Crossref]
    [Google Scholar]
  41. Kroppenstedt RM. Separation of bacterial menaquinones by HPLC using reverse phase (RP18) and a silver loaded ion exchanger as stationary phases. J Liq Chromatogr 1982; 5: 2359– 2367 [CrossRef]
    [Google Scholar]
  42. Hasegawa T, Takizawa M, Tanida S. A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol 1983; 29: 319– 322 [CrossRef]
    [Google Scholar]
  43. Staneck JL, Roberts GD. Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 1974; 28: 226– 231 [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002755
Loading
/content/journal/ijsem/10.1099/ijsem.0.002755
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error