1887

Abstract

Strain D15 was isolated from a soil sample taken from Rambla Salada (Murcia), south-eastern Spain, by using the dilution-to-extinction method. The strain, a Gram-stain-negative aerobic bacteria, is non-motile, ovoid- or rod-shaped, catalase- and oxidase-positive, and grows at NaCl concentrations within the range 0.5–10 % (w/v) [optimum 3 % (w/v)], at 5–30 °C (optimum 28 °C) and at pH 6–9 (optimum pH 7.0). The 16S rRNA gene sequence indicates that it belongs to the genus Roseovarius in the class Alphaproteobacteria . Its closest relatives are Roseovarius tolerans EL-172 and Roseovarius azorensis SSW084, to which the strain shows 16S rRNA gene-sequence similarity values of 96.1 and 95.3 %, respectively. The DNA G+C content is 63 mol%. The major fatty acids (>5 % of the total fatty acids) of strain D15 are C18 : 1ω7c, C16 : 0 and C12 : 0. The only detected isoprenoid quinone of strain D15 is ubiquinone 10 (Q-10). The polar lipid profile contains phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, aminolipid and three polar lipids. Based on the phylogenetic, genotypic, phenotypic and chemotaxonomic data, the strain represents a novel species of the genus Roseovarius , for which the name Roseovarius ramblicola sp. nov. is proposed. Strain D15 (=CECT 9424=LMG 30322) is the type strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002744
2018-04-17
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/6/1851.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002744&mimeType=html&fmt=ahah

References

  1. Labrenz M, Collins MD, Lawson PA, Tindall BJ, Schumann P et al. Roseovarius tolerans gen. nov., sp. nov., a budding bacterium with variable bacteriochlorophyll a production from hypersaline Ekho Lake. Int J Syst Bacteriol 1999; 49: 137– 147 [CrossRef] [PubMed]
    [Google Scholar]
  2. Yoon JH, Kang SJ, Oh TK. Roseovarius aestuarii sp. nov., isolated from a tidal flat of the Yellow Sea in Korea. Int J Syst Evol Microbiol 2008; 58: 1198– 1202 [CrossRef] [PubMed]
    [Google Scholar]
  3. Oh YS, Lim HJ, Cha IT, Im WT, Yoo JS et al. Roseovarius halotolerans sp. nov., isolated from deep seawater. Int J Syst Evol Microbiol 2009; 59: 2718– 2723 [CrossRef] [PubMed]
    [Google Scholar]
  4. Jung YT, Park S, Yoon JH. Roseovarius litoreus sp. nov., isolated from seawater of southern coast of Korean peninsula. Antonie van Leeuwenhoek 2012; 102: 141– 148 [CrossRef] [PubMed]
    [Google Scholar]
  5. Rajasabapathy R, Mohandass C, Dastager SG, Liu Q, Khieu TN et al. Roseovarius azorensis sp. nov., isolated from seawater at Espalamaca, Azores. Antonie van Leeuwenhoek 2014; 105: 571– 578 [CrossRef] [PubMed]
    [Google Scholar]
  6. Li G, Lai Q, Dong C, Ma R, Du Y et al. Roseovarius atlanticus sp. nov., isolated from surface seawater. Int J Syst Evol Microbiol 2016; 66: 639– 644 [CrossRef] [PubMed]
    [Google Scholar]
  7. Sait M, Davis KE, Janssen PH. Effect of pH on isolation and distribution of members of subdivision 1 of the phylum Acidobacteria occurring in soil. Appl Environ Microbiol 2006; 72: 1852– 1857 [CrossRef] [PubMed]
    [Google Scholar]
  8. Rodriguez-Valera F, Ruiz-Berraquero F, Ramos-Cormenzana A. Characteristics of the heterotrophic bacterial populations in hypersaline environments of different salt concentrations. Microb Ecol 1981; 7: 235– 243 [CrossRef] [PubMed]
    [Google Scholar]
  9. Reasoner DJ, Geldreich EE. A new medium for the enumeration and subculture of bacteria from potable water. Appl Environ Microbiol 1985; 49: 1– 7 [PubMed]
    [Google Scholar]
  10. Bruns A, Hoffelner H, Overmann J. A novel approach for high throughput cultivation assays and the isolation of planktonic bacteria. FEMS Microbiol Ecol 2003; 45: 161– 171 [CrossRef] [PubMed]
    [Google Scholar]
  11. Button DK, Schut F, Quang P, Martin R, Robertson BR. Viability and isolation of marine bacteria by dilution culture: theory, procedures, and initial results. Appl Environ Microbiol 1993; 59: 881– 891 [PubMed]
    [Google Scholar]
  12. Connon SA, Giovannoni SJ. High-throughput methods for culturing microorganisms in very-low-nutrient media yield diverse new marine isolates. Appl Environ Microbiol 2002; 68: 3878– 3885 [CrossRef] [PubMed]
    [Google Scholar]
  13. Koch IH, Gich F, Dunfield PF, Overmann J. Edaphobacter modestus gen. nov., sp. nov., and Edaphobacter aggregans sp. nov., acidobacteria isolated from alpine and forest soils. Int J Syst Evol Microbiol 2008; 58: 1114– 1122 [CrossRef] [PubMed]
    [Google Scholar]
  14. Komagata K. Bacteria (1) – the aerobic bacteria. In Hasegawa T. (editor) Classification and I 259 Dentification of Microorganismsvol. 2 Tokyo: Gakkai Shuppan; 1985; pp. 99– 161
    [Google Scholar]
  15. Kovacs N. Identification of Pseudomonas pyocyanea by the oxidase reaction. Nature 1956; 178: 703 [CrossRef] [PubMed]
    [Google Scholar]
  16. Bauer AW, Kirby WM, Sherris JC, Turck M. Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol 1966; 45: 493– 496 [CrossRef] [PubMed]
    [Google Scholar]
  17. Marmur J, Doty P. Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 1962; 5: 109– 118 [CrossRef] [PubMed]
    [Google Scholar]
  18. Ferragut C, Leclerc H. Etude comparative des methodes de determination du Tm de l’ADN bacterien. Ann Microbiol 1976; 127: 223– 235
    [Google Scholar]
  19. Owen RJ, Hill LR. The estimation of base compositions, base pairing and genome sizes of bacterial deoxyribonucleic acids. In Skinner FA, Lovelock DW. (editors) Identification Methods for Microbiologists (Society for Applied Bacteriology Technical Series no. 14), 2nd ed. London: Academic Press; 1979; pp. 277– 296
    [Google Scholar]
  20. Owen RJ, Pitcher D. Current methods for estimating DNA composition and levels of DNA-DNA hybridization. In Goodfellow M, Minnikin E. (editors) Chemical Methods in Bacterial Systematics London: Academic Press; 1985; pp. 67– 93
    [Google Scholar]
  21. Biebl H, Allgaier M, Lünsdorf H, Pukall R, Tindall BJ et al. Roseovarius mucosus sp. nov., a member of the Roseobacter clade with trace amounts of bacteriochlorophyll a. Int J Syst Evol Microbiol 2005; 55: 2377– 2383 [CrossRef] [PubMed]
    [Google Scholar]
  22. Martínez-Checa F, Quesada E, Martínez-Cánovas MJ, Llamas I, Béjar V. Palleronia marisminoris gen. nov., sp. nov., a moderately halophilic, exopolysaccharide-producing bacterium belonging to the 'Alphaproteobacteria', isolated from a saline soil. Int J Syst Evol Microbiol 2005; 55: 2525– 2530 [CrossRef] [PubMed]
    [Google Scholar]
  23. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997; 25: 3389– 3402 [CrossRef] [PubMed]
    [Google Scholar]
  24. Yilmaz P, Parfrey LW, Yarza P, Gerken J, Pruesse E et al. The SILVA and "All-species Living Tree Project (LTP)" taxonomic frameworks. Nucleic Acids Res 2014; 42: D643– D648 [CrossRef] [PubMed]
    [Google Scholar]
  25. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67: 1613– 1617 [CrossRef] [PubMed]
    [Google Scholar]
  26. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33: 1870– 1874 [CrossRef] [PubMed]
    [Google Scholar]
  27. Jukes TH, Cantor CR. Evolution of protein molecules. In Munro HN. (editor) Mammalian Metabolism Protein New York: Academic Press; 1969; pp. 21– 132 [Crossref]
    [Google Scholar]
  28. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI; 1990
    [Google Scholar]
  29. MIDI Sherlock Microbial Identification System Operating Manual, Version 6.1 Newark, DE: MIDI Inc.; 2008
    [Google Scholar]
  30. Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol 1959; 37: 911– 917 [CrossRef] [PubMed]
    [Google Scholar]
  31. Tindall BJ, Sikorski J, Smibert RM, Kreig NR. Phenotypic characterization and the principles of comparative systematics. In Reddy CA, Beveridge TJ, Breznak JA, Marzluf G, Schmidt TM et al. (editors) Methods for General and Molecular Microbiology, 3rd ed. Washington, DC, USA: ASM Press; 2007; pp. 330– 393
    [Google Scholar]
  32. Tindall BJ. A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 1990; 13: 128– 130 [CrossRef]
    [Google Scholar]
  33. Tindall BJ. Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 1990; 66: 199– 202 [CrossRef]
    [Google Scholar]
  34. Hiraishi A, Nagashima KV, Matsuura K, Shimada K, Takaichi S et al. Phylogeny and photosynthetic features of Thiobacillus acidophilus and related acidophilic bacteria: its transfer to the genus Acidiphilium as Acidiphilium acidophilum comb. nov. Int J Syst Bacteriol 1998; 48: 1389– 1398 [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002744
Loading
/content/journal/ijsem/10.1099/ijsem.0.002744
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error