1887

Abstract

A novel Gram-stain-negative, translucent-white, aerobic, motile and rod-shaped strain, designated N18, was isolated from a coastal sediment sample collected in Zhoushan, Zhejiang Province, China. 16S rRNA gene similarity analysis revealed that strain N18 demonstrated highest similarity to the genus Kordiimonas (95.3–97.2 %). Phylogenetic analysis of 16S rRNA gene sequence showed that strain N18 represented a distinct lineage in the clade consisting of the genus Kordiimonas . Strain N18 was found to grow at 10–37 °C (optimum 28 °C), pH 6.0–8.0 (optimum 7.0) and with 1.0–4.0 % (w/v) NaCl (optimum 2.5 %). The G+C content of the genomic DNA was 55.3 mol%. The major cellular fatty acids were identified as summed feature 3 (comprising iso-C15 : 0 2-OH/C16 : 1 ω7c), iso-C17 : 1 ω9c and iso-C15 : 0. The polar lipid profile of N18 consisted of phosphatidylglycerol, phosphatidylethanolamine, diphosphatidylglycerol, an unidentified glycolipid, an unidentified aminoglycolipid, an unidentified aminophospholipid and five unidentified lipids. The respiratory quinone was Q-10. Based on chemotaxonomic, morphological and physiological properties, strain N18 could be distinguished from its closest phylogenetic neighbours. Thus, we propose Kordiimonas pumila sp. nov., the type strain is N18 (=MCCC 1K03436=KCTC 62164).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002740
2018-04-05
2019-10-13
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/5/1743.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002740&mimeType=html&fmt=ahah

References

  1. Math RK, Jeong SH, Jin HM, Park MS, Kim JM et al. Kordiimonas aestuarii sp. nov., a marine bacterium isolated from a tidal flat. Int J Syst Evol Microbiol 2012; 62: 3049– 3054 [CrossRef] [PubMed]
    [Google Scholar]
  2. Yang SH, Kim MR, Seo HS, Lee SH, Lee JH et al. Description of Kordiimonas aquimaris sp. nov., isolated from seawater, and emended descriptions of the genus Kordiimonas Kwon et al. 2005 emend. Xu et al. 2011 and of its existing species. Int J Syst Evol Microbiol 2013; 63: 298– 302 [CrossRef] [PubMed]
    [Google Scholar]
  3. Kwon KK, Lee HS, Yang SH, Kim SJ. Kordiimonas gwangyangensis gen. nov., sp. nov., a marine bacterium isolated from marine sediments that forms a distinct phyletic lineage (Kordiimonadales ord. nov.) in the 'Alphaproteobacteria'. Int J Syst Evol Microbiol 2005; 55: 2033– 2037 [CrossRef] [PubMed]
    [Google Scholar]
  4. Xu XW, Huo YY, Bai XD, Wang CS, Oren A et al. Kordiimonas lacus sp. nov., isolated from a ballast water tank, and emended description of the genus Kordiimonas. Int J Syst Evol Microbiol 2011; 61: 422– 426 [CrossRef] [PubMed]
    [Google Scholar]
  5. Wu YH, Meng FX, Jian SL, Wang CS, Tohty D. Kordiimonas lipolytica sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2016; 66: 2198– 2204 [Crossref]
    [Google Scholar]
  6. Zhang HX, Zhao JX, Chen GJ, du ZJ. Kordiimonas sediminis sp. nov., isolated from a sea cucumber culture pond. Antonie van Leeuwenhoek 2016; 109: 705– 711 [CrossRef] [PubMed]
    [Google Scholar]
  7. Han SB, Su Y, Hu J, Wang RJ, Sun C et al. Terasakiella brassicae sp. nov., isolated from the wastewater of a pickle-processing factory, and emended descriptions of Terasakiella pusilla and the genus Terasakiella. Int J Syst Evol Microbiol 2016; 66: 1807– 1812 [CrossRef] [PubMed]
    [Google Scholar]
  8. Kovacs N. Identification of Pseudomonas pyocyanea by the oxidase reaction. Nature 1956; 178: 703 [CrossRef] [PubMed]
    [Google Scholar]
  9. Sun C, Huo YY, Liu JJ, Pan J, Qi YZ et al. Thalassomonas eurytherma sp. nov., a marine proteobacterium. Int J Syst Evol Microbiol 2014; 64: 2079– 2083 [CrossRef] [PubMed]
    [Google Scholar]
  10. Zhang WY, Huo YY, Zhang XQ, Zhu XF, Wu M. Halolamina salifodinae sp. nov. and Halolamina salina sp. nov., two extremely halophilic archaea isolated from a salt mine. Int J Syst Evol Microbiol 2013; 63: 4380– 4385 [CrossRef] [PubMed]
    [Google Scholar]
  11. Sun C, Pan J, Zhang X, Su Y, Wu M. Pseudoroseovarius zhejiangensis gen. nov., sp. nov., a novel alpha-pro. Antonie Van Leeuwenhoek 2015; 108: 291– 299 [Crossref]
    [Google Scholar]
  12. Pan J, Sun C, Zhang XQ, Huo YY, Zhu XF et al. Paracoccus sediminis sp. nov., isolated from Pacific Ocean marine sediment. Int J Syst Evol Microbiol 2014; 64: 2512– 2516 [CrossRef] [PubMed]
    [Google Scholar]
  13. Leifson E. Determination of carbohydrate metabolism of marine bacteria. J Bacteriol 1963; 85: 1183– 1184 [PubMed]
    [Google Scholar]
  14. Kuykendall LD, Roy MA, O'Neill JJ, Devine TE. Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. Int J Syst Bacteriol 1988; 38: 358– 361 [CrossRef]
    [Google Scholar]
  15. Komagata K, Suzuki KI. 4 Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 1988; 19: 161– 207 [Crossref]
    [Google Scholar]
  16. Tindall BJ, Sikorski J, Smibert RA, Krieg NR. Chapter 15: Phenotypic Characterization and the Principles of Comparative Systematics Washington, DC: American Society of Microbiology; 2007
    [Google Scholar]
  17. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2: 233– 241 [CrossRef]
    [Google Scholar]
  18. Fang MX, Zhang WW, Zhang YZ, Tan HQ, Zhang XQ et al. Brassicibacter mesophilus gen. nov., sp. nov., a strictly anaerobic bacterium isolated from food industry wastewater. Int J Syst Evol Microbiol 2012; 62: 3018– 3023 [CrossRef] [PubMed]
    [Google Scholar]
  19. Xu XW, Wu YH, Zhou Z, Wang CS, Zhou YG et al. Halomonas saccharevitans sp. nov., Halomonas arcis sp. nov. and Halomonas subterranea sp. nov., halophilic bacteria isolated from hypersaline environments of China. Int J Syst Evol Microbiol 2007; 57: 1619– 1624 [CrossRef] [PubMed]
    [Google Scholar]
  20. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012; 62: 716– 721 [CrossRef] [PubMed]
    [Google Scholar]
  21. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4: 406 [CrossRef] [PubMed]
    [Google Scholar]
  22. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17: 368– 376 [CrossRef] [PubMed]
    [Google Scholar]
  23. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20: 406– 416 [CrossRef]
    [Google Scholar]
  24. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33: 1870– 1874 [CrossRef] [PubMed]
    [Google Scholar]
  25. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16: 111– 120 [CrossRef] [PubMed]
    [Google Scholar]
  26. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989; 39: 159– 167 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002740
Loading
/content/journal/ijsem/10.1099/ijsem.0.002740
Loading

Data & Media loading...

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error