1887

Abstract

A Gram-stain-negative, aerobic, non-motile and rod-shaped bacterium, designated strain KTCe-4, was isolated from activated sludge. Based on 16S rRNA gene sequencing and phylogenetic analysis, the novel isolate was found to belong to the genus and was most closely related to DSM 18829 (97.8 %), THG-SM1 (97.8 %), TTM-43 (97.4 %) and shared <96.4 % sequence similarity to the other members of the genus. Strain KTCe-4 contained MK-6 as the predominant isoprenoid quinone and iso-C, iso-C G, iso-C 3-OH, iso-C 3-OH and iso-Cω9, as the major fatty acids. The major polar lipids were phosphatidylethanolamine, two unidentified polar lipids and one unknown amino lipid. The DNA–DNA relatedness values of strain KTCe-4 with respect to type strains of recognized species of the genus were less than 70 %. Based on 16S rRNA gene sequencing, low values of DNA–DNA hybridization and polyphasic taxonomic analysis, strain KTCe-4 represents a novel species within the genus , for which the name sp. nov. is proposed. The type strain of is strain KTCe-4 (=KACC 16613=JCM 18198).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002739
2018-05-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/5/1732.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002739&mimeType=html&fmt=ahah

References

  1. Ludwig W, Euzéby J, Whitman WB. Taxonomic outlines of the phyla Bacteroidetes, Spirochaetes, Tenericutes (Mollicutes), Acidobacteria, Fibrobacteres, Fusobacteria, Dictyoglomi, Gemmatimonadetes, Lentisphaerae, Verrucomicrobia, Chlamydiae, and Planctomycetes . In Krieg NR, Ludwig W, Whitman W, Hedlund BP, Paster BJ et al. (editors) Bergey’s Manual of Systematic Bacteriology, 2nd ed. vol. 4 New York: Springer; 2010 pp. 21–24 [Crossref]
    [Google Scholar]
  2. Bergey DH, Harrison FC, Breed RS, Hammer BW, Huntoon FM et al. Bergey’s Manual of Determinative Bacteriology Baltimore: Williams & Wilkins; 1923
    [Google Scholar]
  3. Bernardet J-F, Segers P, Vancanneyt M, Berthe F, Kersters K et al. Cutting a Gordian Knot: emended classification and description of the genus Flavobacterium, emended description of the family Flavobacteriaceae, and proposal of Flavobacterium hydatis nom. nov. (Basonym, Cytophaga aquatilis Strohl and Tait 1978). Int J Syst Bacteriol 1996; 46:128–148 [View Article]
    [Google Scholar]
  4. Bernardet JF, Bowman JP. The genus Flavobacterium. In Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E et al. (editors) The Prokaryotes, 3rd ed. vol. 7 New York: Springer; 2006 pp. 481–531 [Crossref]
    [Google Scholar]
  5. Kang JY, Chun J, Jahng KY. Flavobacterium aciduliphilum sp. nov., isolated from freshwater, and emended description of the genus Flavobacterium . Int J Syst Evol Microbiol 2013; 63:1633–1638 [View Article][PubMed]
    [Google Scholar]
  6. Weon HY, Song MH, Son JA, Kim BY, Kwon SW et al. Flavobacterium terrae sp. nov. and Flavobacterium cucumis sp. nov., isolated from greenhouse soil. Int J Syst Evol Microbiol 2007; 57:1594–1598 [View Article][PubMed]
    [Google Scholar]
  7. Dong K, Liu H, Zhang J, Zhou Y, Xin Y. Flavobacterium xueshanense sp. nov. and Flavobacterium urumqiense sp. nov., two psychrophilic bacteria isolated from glacier ice. Int J Syst Evol Microbiol 2012; 62:1151–1157 [View Article][PubMed]
    [Google Scholar]
  8. Dong K, Chen F, Du Y, Wang G. Flavobacterium enshiense sp. nov., isolated from soil, and emended descriptions of the genus Flavobacterium and Flavobacterium cauense, Flavobacterium saliperosum and Flavobacterium suncheonense . Int J Syst Evol Microbiol 2013; 63:886–892 [View Article][PubMed]
    [Google Scholar]
  9. Li A, Liu H, Sun B, Zhou Y, Xin Y. Flavobacterium lacus sp. nov., isolated from a high-altitude lake, and emended description of Flavobacterium filum . Int J Syst Evol Microbiol 2014; 64:933–939 [View Article][PubMed]
    [Google Scholar]
  10. Chen WM, Chen YL, Sheu SY. Flavobacterium brevivitae sp. nov., isolated from river water. Int J Syst Evol Microbiol 2016; 66:1705–1712 [View Article][PubMed]
    [Google Scholar]
  11. Kim JK, Kang MS, Park SC, Kim KM, Choi K et al. Sphingosinicella ginsenosidimutans sp. nov., with ginsenoside converting activity. J Microbiol 2015; 53:435–441 [View Article][PubMed]
    [Google Scholar]
  12. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25:4876–4882 [View Article][PubMed]
    [Google Scholar]
  13. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 1999; 41:95–98
    [Google Scholar]
  14. Kimura M. The Neutral Theory of Molecular Evolution Cambridge: Cambridge University Press; 1983 [Crossref]
    [Google Scholar]
  15. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article][PubMed]
    [Google Scholar]
  16. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20:406–416 [View Article]
    [Google Scholar]
  17. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30:2725–2729 [View Article][PubMed]
    [Google Scholar]
  18. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article][PubMed]
    [Google Scholar]
  19. Fautz E, Reichenbach H. A simple test for flexirubin-type pigments. FEMS Microbiol Lett 1980; 8:87–91 [View Article]
    [Google Scholar]
  20. Moore DD, Dowhan D. Preparation and analysis of DNA. In Ausubel FW, Brent R, Kingston RE, Moore DD, Seidman JG et al. (editors) Current Protocols in Molecular Biology New York: Wiley; 1995 pp. 2–11
    [Google Scholar]
  21. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989; 39:159–167 [View Article]
    [Google Scholar]
  22. Sasser M. Identification of bacteria through fatty acid analysis. In Klement Z, Rudolph K, Sands DC. (editors) Methods in Phytobacteriology Budapest: Akademiai Kaido; 1990 pp. 199–204
    [Google Scholar]
  23. Hiraishi A, Ueda Y, Ishihara J, Mori T. Comparative lipoquinone analysis of influent sewage and activated sludge by high-performance liquid chromatography and photodiode array detection. J Gen Appl Microbiol 1996; 42:457–469 [View Article]
    [Google Scholar]
  24. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  25. Ezaki T, Hashimoto Y, Yabuuchi E. Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 1989; 39:224–229 [View Article]
    [Google Scholar]
  26. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O et al. International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 1987; 37:463–464 [Crossref]
    [Google Scholar]
  27. Singh H, Du J, Won K, Yang JE, Akter S et al. Flavobacterium vireti sp. nov., isolated from soil. Antonie van Leeuwenhoek 2015; 107:1421–1428 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002739
Loading
/content/journal/ijsem/10.1099/ijsem.0.002739
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error