1887

Abstract

A Gram-stain-positive, non-motile, butyrate-producing coccus was cultured from the distal ileum of swine. This organism was isolated on rumen-fluid medium, consumes acetate, and produces butyrate as its major end product when grown on mono- and di-saccharides. A phylogenetic analysis based on near full-length 16S rRNA gene sequences as well as whole-genome phylogenies suggests that this isolate is most closely related to species in the genus Butyricicoccus , with Butyricicoccus pullicaecorum being the closest named relative (93.5 % 16S similarity). The G+C content of this isolate is 54 mol%, and the major cellular fatty acids are C18 : 0 DMA, C14 : 0, C18 : 1ω9c and C16 : 0. These data indicate that this isolate represents a novel species within the genus Butyricicoccus , for which the name Butyricicoccus porcorum sp. nov. is proposed. The type strain of Butyricicoccus porcorum is BB10 (ATCC TSD-102, DSM 104997).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002738
2018-04-05
2019-12-08
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/5/1737.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002738&mimeType=html&fmt=ahah

References

  1. Rivera-Chávez F, Zhang LF, Faber F, Lopez CA, Byndloss MX et al. Depletion of butyrate-producing Clostridia from the gut microbiota drives an aerobic luminal expansion of Salmonella. Cell Host Microbe 2016; 19: 443– 454 [CrossRef] [PubMed]
    [Google Scholar]
  2. Xiong H, Guo B, Gan Z, Song D, Lu Z et al. Butyrate upregulates endogenous host defense peptides to enhance disease resistance in piglets via histone deacetylase inhibition. Sci Rep 2016; 6: 27070 [CrossRef] [PubMed]
    [Google Scholar]
  3. Schilderink R, Verseijden C, Seppen J, Muncan V, van den Brink GR et al. The SCFA butyrate stimulates the epithelial production of retinoic acid via inhibition of epithelial HDAC. Am J Physiol Gastrointest Liver Physiol 2016; 310: G1138– 1146 [CrossRef] [PubMed]
    [Google Scholar]
  4. Ji J, Shu D, Zheng M, Wang J, Luo C et al. Microbial metabolite butyrate facilitates M2 macrophage polarization and function. Sci Rep 2016; 6: 24838 [CrossRef] [PubMed]
    [Google Scholar]
  5. Cushing K, Alvarado DM, Ciorba MA. Butyrate and mucosal inflammation: new scientific evidence supports clinical observation. Clin Transl Gastroenterol 2015; 6: e108 [CrossRef] [PubMed]
    [Google Scholar]
  6. Singh N, Gurav A, Sivaprakasam S, Brady E, Padia R et al. Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis. Immunity 2014; 40: 128– 139 [CrossRef] [PubMed]
    [Google Scholar]
  7. Chang PV, Hao L, Offermanns S, Medzhitov R. The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition. Proc Natl Acad Sci USA 2014; 111: 2247– 2252 [CrossRef] [PubMed]
    [Google Scholar]
  8. Furusawa Y, Obata Y, Fukuda S, Endo TA, Nakato G et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 2013; 504: 446– 450 [CrossRef] [PubMed]
    [Google Scholar]
  9. Zimmerman MA, Singh N, Martin PM, Thangaraju M, Ganapathy V et al. Butyrate suppresses colonic inflammation through HDAC1-dependent Fas upregulation and Fas-mediated apoptosis of T cells. Am J Physiol Gastrointest Liver Physiol 2012; 302: G1405– 1415 [CrossRef] [PubMed]
    [Google Scholar]
  10. Fontenelle B, Gilbert KM. n-Butyrate anergized effector CD4+ T cells independent of regulatory T cell generation or activity. Scand J Immunol 2012; 76: 457– 463 [CrossRef] [PubMed]
    [Google Scholar]
  11. Eeckhaut V, van Immerseel F, Teirlynck E, Pasmans F, Fievez V et al. Butyricicoccus pullicaecorum gen. nov., sp. nov., an anaerobic, butyrate-producing bacterium isolated from the caecal content of a broiler chicken. Int J Syst Evol Microbiol 2008; 58: 2799– 2802 [CrossRef] [PubMed]
    [Google Scholar]
  12. Ahn S, Jin TE, Chang DH, Rhee MS, Kim HJ et al. Agathobaculum butyriciproducens gen. nov. sp. nov., a strict anaerobic, butyrate-producing gut bacterium isolated from human faeces and reclassification of Eubacterium desmolans as Agathobaculum desmolans comb. nov. Int J Syst Evol Microbiol 2016; 66: 3656– 3661 [CrossRef] [PubMed]
    [Google Scholar]
  13. Takada T, Watanabe K, Makino H, Kushiro A. Reclassification of Eubacterium desmolans as Butyricicoccus desmolans comb. nov., and description of Butyricicoccus faecihominis sp. nov., a butyrate-producing bacterium from human faeces. Int J Syst Evol Microbiol 2016; 66: 4125– 4131 [CrossRef] [PubMed]
    [Google Scholar]
  14. Ziemer CJ. Newly cultured bacteria with broad diversity isolated from eight-week continuous culture enrichments of cow feces on complex polysaccharides. Appl Environ Microbiol 2014; 80: 574– 585 [CrossRef] [PubMed]
    [Google Scholar]
  15. Morris GN, Winter J, Cato EP, Ritchie AE, Bokkenheuser VD. Eubacterium desmolans sp. nov., a steroid desmolase-producing species from cat fecal flora. Int J Syst Evol Microbiol 1986; 36: 183– 186
    [Google Scholar]
  16. Barcenilla A, Pryde SE, Martin JC, Duncan SH, Stewart CS et al. Phylogenetic relationships of butyrate-producing bacteria from the human gut. Appl Environ Microbiol 2000; 66: 1654– 1661 [PubMed] [Crossref]
    [Google Scholar]
  17. Eeckhaut V, van Immerseel F, Croubels S, de Baere S, Haesebrouck F et al. Butyrate production in phylogenetically diverse Firmicutes isolated from the chicken caecum. Microb Biotechnol 2011; 4: 503– 512 [CrossRef] [PubMed]
    [Google Scholar]
  18. Li X, Højberg O, Canibe N, Jensen BB. Phylogenetic diversity of cultivable butyrate-producing bacteria from pig gut content and feces. J Anim Sci 2016; 94: 377– 381 [Crossref]
    [Google Scholar]
  19. Devriese S, Eeckhaut V, Geirnaert A, van den Bossche L, Hindryckx P et al. Reduced mucosa-associated Butyricicoccus activity in patients with ulcerative colitis correlates with aberrant claudin-1 expression. J Crohns Colitis 2017; 11: 229– 236 [CrossRef] [PubMed]
    [Google Scholar]
  20. Eeckhaut V, Ducatelle R, Sas B, Vermeire S, van Immerseel F. Progress towards butyrate-producing pharmabiotics: Butyricicoccus pullicaecorum capsule and efficacy in TNBS models in comparison with therapeutics. Gut 2014; 63: 367 [CrossRef] [PubMed]
    [Google Scholar]
  21. Eeckhaut V, Wang J, van Parys A, Haesebrouck F, Joossens M et al. The probiotic Butyricicoccus pullicaecorum reduces feed conversion and protects from potentially harmful intestinal microorganisms and necrotic enteritis in broilers. Front Microbiol 2016; 7: 1416 [CrossRef] [PubMed]
    [Google Scholar]
  22. Turner S, Pryer KM, Miao VP, Palmer JD. Investigating deep phylogenetic relationships among cyanobacteria and plastids by small subunit rRNA sequence analysis. J Eukaryot Microbiol 1999; 46: 327– 338 [PubMed] [Crossref]
    [Google Scholar]
  23. Cole JR, Wang Q, Fish JA, Chai B, McGarrell DM et al. Ribosomal Database Project: data and tools for high throughput rRNA analysis. Nucleic Acids Res 2014; 42: D633– D642 [CrossRef] [PubMed]
    [Google Scholar]
  24. Salanitro JP, Muirhead PA. Quantitative method for the gas chromatographic analysis of short-chain monocarboxylic and dicarboxylic acids in fermentation media. Appl Microbiol 1975; 29: 374– 381 [PubMed]
    [Google Scholar]
  25. Browne HP, Forster SC, Anonye BO, Kumar N, Neville BA et al. Culturing of 'unculturable' human microbiota reveals novel taxa and extensive sporulation. Nature 2016; 533: 543– 546 [CrossRef] [PubMed]
    [Google Scholar]
  26. Trachsel J, Bayles DO, Looft T, Levine UY, Allen HK. Function and phylogeny of bacterial butyryl coenzyme A:acetate transferases and their diversity in the proximal colon of swine. Appl Environ Microbiol 2016; 82: 6788– 6798 [CrossRef] [PubMed]
    [Google Scholar]
  27. Auch AF, von Jan M, Klenk HP, Göker M. Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2010; 2: 117– 134 [CrossRef] [PubMed]
    [Google Scholar]
  28. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ et al. The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res 2014; 42: D206– 214 [CrossRef] [PubMed]
    [Google Scholar]
  29. Bernal P, Llamas MA. Promising biotechnological applications of antibiofilm exopolysaccharides. Microb Biotechnol 2012; 5: 670– 673 [CrossRef] [PubMed]
    [Google Scholar]
  30. Rossi O, Khan MT, Schwarzer M, Hudcovic T, Srutkova D et al. Faecalibacterium prausnitzii strain HTF-F and its extracellular polymeric matrix attenuate clinical parameters in DSS-induced colitis. PLoS One 2015; 10: e0123013 [CrossRef] [PubMed]
    [Google Scholar]
  31. Jeraldo P, Hernandez A, Nielsen HB, Chen X, White BA et al. Capturing one of the human gut microbiome's most wanted: reconstructing the genome of a novel butyrate-producing, clostridial scavenger from metagenomic sequence data. Front Microbiol 2016; 7: 783 [CrossRef] [PubMed]
    [Google Scholar]
  32. Tan IS, Ramamurthi KS. Spore formation in Bacillus subtilis. Environ Microbiol Rep 2014; 6: 212– 225 [CrossRef] [PubMed]
    [Google Scholar]
  33. Cock PJ, Antao T, Chang JT, Chapman BA, Cox CJ et al. Biopython: freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics 2009; 25: 1422– 1423 [CrossRef] [PubMed]
    [Google Scholar]
  34. Geirnaert A, Steyaert A, Eeckhaut V, Debruyne B, Arends JB et al. Butyricicoccus pullicaecorum, a butyrate producer with probiotic potential, is intrinsically tolerant to stomach and small intestine conditions. Anaerobe 2014; 30: 70– 74 [CrossRef] [PubMed]
    [Google Scholar]
  35. Lagesen K, Hallin P, Rødland EA, Staerfeldt HH, Rognes T et al. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 2007; 35: 3100– 3108 [CrossRef] [PubMed]
    [Google Scholar]
  36. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 2013; 41: D590– D596 [CrossRef] [PubMed]
    [Google Scholar]
  37. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 2009; 75: 7537– 7541 [CrossRef] [PubMed]
    [Google Scholar]
  38. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014; 30: 1312– 1313 [CrossRef] [PubMed]
    [Google Scholar]
  39. Segata N, Börnigen D, Morgan XC, Huttenhower C. PhyloPhlAn is a new method for improved phylogenetic and taxonomic placement of microbes. Nat Commun 2013; 4: 2304 [CrossRef] [PubMed]
    [Google Scholar]
  40. Kobayashi Y, Itoh A, Miyawaki K, Koike S, Iwabuchi O et al. Effect of liquid whey feeding on fecal microbiota of mature and growing pigs. Anim Sci J 2011; 82: 607– 615 [CrossRef] [PubMed]
    [Google Scholar]
  41. Kalmokoff M, Waddington LM, Thomas M, Liang KL, Ma C et al. Continuous feeding of antimicrobial growth promoters to commercial swine during the growing/finishing phase does not modify faecal community erythromycin resistance or community structure. J Appl Microbiol 2011; 110: 1414– 1425 [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002738
Loading
/content/journal/ijsem/10.1099/ijsem.0.002738
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error