1887

Abstract

A Gram-stain-negative, rod-shaped, aerobic, straw yellow, motile strain, designated KNDSW-TSA6, belonging to the genus Acidovorax , was isolated from a water sample of the river Ganges, downstream of the city of Kanpur, Uttar Pradesh, India. Cells were aerobic, non-endospore-forming and motile with single polar flagella. It differed from its phylogenetically related strains by phenotypic characteristics such as hydrolysis of urea, gelatin, casein and DNA, and the catalase reaction. The major fatty acids were C16 : 1 ω7c/C16 : 1 ω6c, C16 : 0 and C18 : 1 ω7c/C18 : 1 ω6c. Phylogenetic analysis based on 16S rRNA and housekeeping genes (gyrb, recA and rpoB gene sequences), confirmed its placement within the genus Acidovorax as a novel species. Strain KNDSW-TSA6 showed highest 16S rRNA sequence similarity to Acidovorax soli BL21 (98.9 %), Acidovorax delafieldii ATCC 17505 (98.8 %), Acidovorax temperans CCUG 11779 (98.2 %), Acidovorax caeni R-24608 (97.9 %) and Acidovorax radicis N35 (97.6 %). The digital DNA–DNA hybridization and average nucleotide identity values calculated from whole genome sequences between strain KNDSW-TSA6 and the two most closely related strains A. soli BL21 and A. delafieldii ATCC 17505 were below the threshold values of 70 and 95 % respectively. Thus, the data from the polyphasic taxonomic analysis clearly indicates that strain KNDSW-TSA6 represents a novel species, for which the name Acidovorax kalamii sp. nov. is proposed. The type strain is Acidovorax kalamii (=MTCC 12652=KCTC 52819=VTCC-B-910010).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002736
2018-04-04
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/5/1719.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002736&mimeType=html&fmt=ahah

References

  1. Willems A, Falsen E, Pot B, Jantzen E, Hoste B et al. Acidovorax, a new genus for Pseudomonas facilis, Pseudomonas delafieldii, E. Falsen (EF) group 13, EF group 16, and several clinical isolates, with the species Acidovorax facilis comb. nov., Acidovorax delafieldii comb. nov., and Acidovorax temperans sp. nov. Int J Syst Bacteriol 1990;40:384–398 [CrossRef][PubMed]
    [Google Scholar]
  2. Gardan L, Dauga C, Prior P, Gillis M, Saddler GS. Acidovorax anthurii sp. nov., a new phytopathogenic bacterium which causes bacterial leaf-spot of anthurium. Int J Syst Evol Microbiol 2000;50:235–246 [CrossRef][PubMed]
    [Google Scholar]
  3. Willems A, Goor M, Thielemans S, Gillis M, Kersters K et al. Transfer of several phytopathogenic Pseudomonas species to Acidovorax as Acidovorax avenae subsp. avenae subsp. nov., comb. nov., Acidovorax avenae subsp. citrulli, Acidovorax avenae subsp. cattleyae, and Acidovorax konjaci. Int J Syst Bacteriol 1992;42:107–119 [CrossRef][PubMed]
    [Google Scholar]
  4. Gardan L, Stead DE, Dauga C, Gillis M. Acidovorax valerianellae sp. nov., a novel pathogen of lamb's lettuce [Valerianella locusta (L.) Laterr]. Int J Syst Evol Microbiol 2003;53:795–800 [CrossRef][PubMed]
    [Google Scholar]
  5. Li D, Rothballer M, Schmid M, Esperschütz J, Hartmann A. Acidovorax radicis sp. nov., a wheat-root-colonizing bacterium. Int J Syst Evol Microbiol 2011;61:2589–2594 [CrossRef][PubMed]
    [Google Scholar]
  6. Schaad NW, Postnikova E, Sechler A, Claflin LE, Vidaver AK et al. Reclassification of subspecies of Acidovorax avenae as A. avenae (Manns 1905) emend., A. cattleyae (Pavarino, 1911) comb. nov., A. citrulli Schaad et al. 2009, 1978) comb. nov., and proposal of A. oryzae sp. nov. Syst Appl Microbiol 2008;31:434–446 [CrossRef][PubMed]
    [Google Scholar]
  7. Heylen K, Lebbe L, de Vos P. Acidovorax caeni sp. nov., a denitrifying species with genetically diverse isolates from activated sludge. Int J Syst Evol Microbiol 2008;58:73–77 [CrossRef][PubMed]
    [Google Scholar]
  8. Schulze R, Spring S, Amann R, Huber I, Ludwig W et al. Genotypic diversity of Acidovorax strains isolated from activated sludge and description of Acidovorax defluvii sp. nov. Syst Appl Microbiol 1999;22:205–214 [CrossRef][PubMed]
    [Google Scholar]
  9. Choi JH, Kim MS, Roh SW, Bae JW. Acidovorax soli sp. nov., isolated from landfill soil. Int J Syst Evol Microbiol 2010;60:2715–2718 [CrossRef][PubMed]
    [Google Scholar]
  10. Vaneechoutte M, Janssens M, Avesani V, Delmée M, Deschaght P. Description of Acidovorax wautersii sp. nov. to accommodate clinical isolates and an environmental isolate, most closely related to Acidovorax avenae. Int J Syst Evol Microbiol 2013;63:2203–2206 [CrossRef][PubMed]
    [Google Scholar]
  11. Murray RGE, Doetsch RN, Robinow CF. Determinative and cytological light microscopy. In Gerhard P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994; pp.36
    [Google Scholar]
  12. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994; pp.607–654
    [Google Scholar]
  13. Xu P, Li WJ, Tang SK, Zhang YQ, Chen GZ et al. Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family 'Oxalobacteraceae' isolated from China. Int J Syst Evol Microbiol 2005;55:1149–1153 [CrossRef][PubMed]
    [Google Scholar]
  14. Cowan ST, Steel KJ. Manual for the Identification of Medical Bacteria London: Cambridge University Press; 1965
    [Google Scholar]
  15. Lanyi B. Classical and rapid identification methods for medically important bacteria. Methods Microbiol 1987;19:1–67
    [Google Scholar]
  16. Smith NR, Gordon RE, Clark FE. Aerobic Spore Forming Bacteria Washington, DC: Agriculture Monograph No. 16, United States Department of Agriculture; 1952
    [Google Scholar]
  17. Pandey KK, Mayilraj S, Chakrabarti T. Pseudomonas indica sp. nov., a novel butane-utilizing species. Int J Syst Evol Microbiol 2002;52:1559–1567 [CrossRef][PubMed]
    [Google Scholar]
  18. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  19. Mayilraj S, Saha P, Suresh K, Saini HS. Ornithinimicrobium kibberense sp. nov., isolated from the Indian Himalayas. Int J Syst Evol Microbiol 2006;56:1657–1661 [CrossRef][PubMed]
    [Google Scholar]
  20. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67:1613–1617 [CrossRef][PubMed]
    [Google Scholar]
  21. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33:1870–1874 [CrossRef][PubMed]
    [Google Scholar]
  22. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990;215:403–410 [CrossRef][PubMed]
    [Google Scholar]
  23. Benson DA, Cavanaugh M, Clark K, Karsch-Mizrachi I, Lipman DJ et al. GenBank. Nucleic Acids Res 2013;41:D36–D42 [CrossRef][PubMed]
    [Google Scholar]
  24. Chander AM, Nair RG, Kaur G, Kochhar R, Dhawan DK et al. Genome insight and comparative pathogenomic analysis of Nesterenkonia jeotgali strain CD08_7 isolated from duodenal mucosa of celiac disease patient. Front Microbiol 2017;8:129 [CrossRef][PubMed]
    [Google Scholar]
  25. Lee I, Ouk Kim Y, Park SC, Chun J. OrthoANI: An improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016;66:1100–1103 [CrossRef][PubMed]
    [Google Scholar]
  26. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013;14:60 [CrossRef][PubMed]
    [Google Scholar]
  27. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007;57:81–91 [CrossRef][PubMed]
    [Google Scholar]
  28. Stackebrandt E, Goebel BM. Taxonomic Note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 1994;44:846–849 [CrossRef]
    [Google Scholar]
  29. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425 [CrossRef][PubMed]
    [Google Scholar]
  30. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39:783–791 [CrossRef][PubMed]
    [Google Scholar]
  31. Tamura K, Nei M, Kumar S. Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci USA 2004;101:11030–11035 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002736
Loading
/content/journal/ijsem/10.1099/ijsem.0.002736
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error