1887

Abstract

Urolithins are gut microbial metabolites that exert health benefits in vivo and are generated from ellagic acid (EA) and ellagitannin-containing foods such as strawberries, pomegranates and walnuts. Gordonibacter species produce some intermediary urolithins but the micro-organisms responsible for the transformation of EA into the final and more bioactive urolithins, such as urolithin A and isourolithin A, are unknown. We report here a new bacterium, capable of metabolizing EA into isourolithin A, isolated from healthy human faeces and characterized by determining phenotypic, biochemical and molecular methods. Strain CEBAS 4A belongs to the Eggerthellaceae family and differed from other genera of this family, both phylogenetically and phenotypically. Based on 16S rRNA gene sequence similarity, the strain was related to Enterorhabdus musicola DSM 19490 (92.9 % similarity), Enterorhabdus caecimuris DSM 21839 (92.7 % similarity), Adlercreutzia equolifaciens DSM 19450 (92.5 % similarity), Asaccharobacter celatus DSM 18785 (92.5 % similarity) and Parvibacter caecicola DSM 22242 (91.2 % similarity). This strain was strictly anaerobic and Gram-stain-positive. The whole-cell fatty acids were saturated (98.3 %), a very high percentage that differs from the nearest genera ranging from 62 to 73 %. The major respiratory lipoquinone was menaquinone-7 and the diamino acid in the peptidoglycan was meso-diaminopimelic acid. Diphosphatidylglycerol and phosphatidylglycerol comprised the main polar lipid profile in addition to several phosphoglycolipids (PGL1–2), phospholipids (PL1–4), glycolipids (GL1–6) and lipids. Based on these data, a new genus, Ellagibacter gen. nov. is proposed with one species, Ellagibacter isourolithinifaciens sp. nov. The type strain of Ellagibacter isourolithinifaciens is CEBAS 4A (=DSM 104140=CCUG 70284).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002735
2018-03-27
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/5/1707.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002735&mimeType=html&fmt=ahah

References

  1. Tomás-Barberán FA, González-Sarrías A, García-Villalba R, Núñez-Sánchez MA, Selma MV et al. Urolithins, the rescue of "old" metabolites to understand a "new" concept: metabotypes as a nexus among phenolic metabolism, microbiota dysbiosis, and host health status. Mol Nutr Food Res 2017; 61: 1500901 [CrossRef] [PubMed]
    [Google Scholar]
  2. Tomás-Barberán FA, Selma MV, Espín JC. Interactions of gut microbiota with dietary polyphenols and consequences to human health. Curr Opin Clin Nutr Metab Care 2016; 19: 471– 476 [CrossRef] [PubMed]
    [Google Scholar]
  3. Selma MV, Espín JC, Tomás-Barberán FA. Interaction between phenolics and gut microbiota: role in human health. J Agric Food Chem 2009; 57: 6485– 6501 [CrossRef] [PubMed]
    [Google Scholar]
  4. Cerdá B, Espín JC, Parra S, Martínez P, Tomás-Barberán FA. The potent in vitro antioxidant ellagitannins from pomegranate juice are metabolised into bioavailable but poor antioxidant hydroxy-6H-dibenzopyran-6-one derivatives by the colonic microflora of healthy humans. Eur J Nutr 2004; 43: 205– 220 [CrossRef] [PubMed]
    [Google Scholar]
  5. Larrosa M, García-Conesa MT, Espín JC, Tomás-Barberán FA. Ellagitannins, ellagic acid and vascular health. Mol Aspects Med 2010; 31: 513– 539 [CrossRef] [PubMed]
    [Google Scholar]
  6. Espín JC, Larrosa M, García-Conesa MT, Tomás-Barberán F. Biological significance of urolithins, the gut microbial ellagic acid-derived metabolites: the evidence so far. Evid Based Complement Alternat Med 2013; 2013: 1– 15 [CrossRef] [PubMed]
    [Google Scholar]
  7. Tomás-Barberán FA, García-Villalba R, González-Sarrías A, Selma MV, Espín JC. Ellagic acid metabolism by human gut microbiota: consistent observation of three urolithin phenotypes in intervention trials, independent of food source, age, and health status. J Agric Food Chem 2014; 62: 6535– 6538 [CrossRef] [PubMed]
    [Google Scholar]
  8. Romo-Vaquero M, García-Villalba R, González-Sarrías A, Beltrán D, Tomás-Barberán FA et al. Interindividual variability in the human metabolism of ellagic acid: contribution of Gordonibacter to urolithin production. J Funct Foods 2015; 17: 785– 791 [CrossRef]
    [Google Scholar]
  9. Selma MV, Romo-Vaquero M, García-Villalba R, González-Sarrías A, Tomás-Barberán FA et al. The human gut microbial ecology associated with overweight and obesity determines ellagic acid metabolism. Food Funct 2016; 7: 1769– 1774 [CrossRef] [PubMed]
    [Google Scholar]
  10. Selma MV, Beltrán D, García-Villalba R, Espín JC, Tomás-Barberán FA. Description of urolithin production capacity from ellagic acid of two human intestinal Gordonibacter species. Food Funct 2014; 5: 1779– 1784 [CrossRef] [PubMed]
    [Google Scholar]
  11. Selma MV, Tomás-Barberán FA, Beltrán D, García-Villalba R, Espín JC. Gordonibacter urolithinfaciens sp. nov., a urolithin-producing bacterium isolated from the human gut. Int J Syst Evol Microbiol 2014; 64: 2346– 2352 [CrossRef] [PubMed]
    [Google Scholar]
  12. Espín JC, González-Sarrías A, Tomás-Barberán FA. The gut microbiota: a key factor in the therapeutic effects of (poly)phenols. Biochem Pharmacol 2017; 139: 82– 93 [CrossRef] [PubMed]
    [Google Scholar]
  13. Selma MV, Beltrán D, Luna MC, Romo-Vaquero M, García-Villalba R et al. Isolation of human intestinal bacteria capable of producing the bioactive metabolite isourolithin A from ellagic acid. Front Microbiol 2017; 8: 1– 8 [CrossRef] [PubMed]
    [Google Scholar]
  14. García-Villalba R, Espín JC, Tomás-Barberán FA. Chromatographic and spectroscopic characterization of urolithins for their determination in biological samples after the intake of foods containing ellagitannins and ellagic acid. J Chromatogr A 2016; 1428: 162– 175 [CrossRef] [PubMed]
    [Google Scholar]
  15. Doetsch RN. Determinative methods of light microscopy. In Gerhardt P, Murray RGE, Costilow RN, Nester EW, Wood WA et al. (editors) Manual of Methods for General Bacteriology Washington, DC: American Society for Microbiology; 1981; pp. 21– 33
    [Google Scholar]
  16. Arahal DR, Sánchez E, Macián MC, Garay E. Value of recN sequences for species identification and as a phylogenetic marker within the family "Leuconostocaceae". Int Microbiol 2008; 11: 33– 39 [PubMed]
    [Google Scholar]
  17. Lucena T, Pascual J, Garay E, Arahal DR, Macián MC et al. Haliea mediterranea sp. nov., a marine gammaproteobacterium. Int J Syst Evol Microbiol 2010; 60: 1844– 1848 [CrossRef] [PubMed]
    [Google Scholar]
  18. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33: 1870– 1874 [CrossRef] [PubMed]
    [Google Scholar]
  19. Jukes TH, Cantor CR. Evolution of Protein Molecules: Mammalian Protein Metabolism New York: Academic Press; 1969; pp. 21– 132 [Crossref]
    [Google Scholar]
  20. Rhuland LE, Work E, Denman RF, Hoare DS. The behavior of the isomers of α,ε-diaminopimelic acid on paper chromatograms. J Am Chem Soc 1955; 77: 4844– 4846 [CrossRef]
    [Google Scholar]
  21. Würdemann D, Tindall BJ, Pukall R, Lünsdorf H, Strömpl C et al. Gordonibacter pamelaeae gen. nov., sp. nov., a new member of the Coriobacteriaceae isolated from a patient with Crohn's disease, and reclassification of Eggerthella hongkongensis Lau et al. 2006 as Paraeggerthella hongkongensis gen. nov., comb. nov. Int J Syst Evol Microbiol 2009; 59: 1405– 1415 [CrossRef] [PubMed]
    [Google Scholar]
  22. Maruo T, Sakamoto M, Ito C, Toda T, Benno Y. Adlercreutzia equolifaciens gen. nov., sp. nov., an equol-producing bacterium isolated from human faeces, and emended description of the genus Eggerthella. Int J Syst Evol Microbiol 2008; 58: 1221– 1227 [CrossRef] [PubMed]
    [Google Scholar]
  23. Clavel T, Charrier C, Wenning M, Haller D. Parvibacter caecicola gen. nov., sp. nov., a bacterium of the family Coriobacteriaceae isolated from the caecum of a mouse. Int J Syst Evol Microbiol 2013; 63: 2642– 2648 [CrossRef] [PubMed]
    [Google Scholar]
  24. Lagier JC, Elkarkouri K, Rivet R, Couderc C, Raoult D et al. Non contiguous-finished genome sequence and description of Senegalemassilia anaerobia gen. nov., sp. nov. Stand Genomic Sci 2013; 7: 343– 356 [CrossRef] [PubMed]
    [Google Scholar]
  25. Gupta RS, Chen WJ, Adeolu M, Chai Y. Molecular signatures for the class Coriobacteriia and its different clades; proposal for division of the class Coriobacteriia into the emended order Coriobacteriales, containing the emended family Coriobacteriaceae and Atopobiaceae fam. nov., and Eggerthellales ord. nov., containing the family Eggerthellaceae fam. nov. Int J Syst Evol Microbiol 2013; 63: 3379– 3397 [CrossRef] [PubMed]
    [Google Scholar]
  26. Yarza P, Richter M, Peplies J, Euzeby J, Amann R et al. The All-Species Living Tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. Syst Appl Microbiol 2008; 31: 241– 250 [CrossRef] [PubMed]
    [Google Scholar]
  27. Clavel T, Lepage P, Charrier C. The family Coriobacteriaceae. In Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F et al. (editors) The Prokaryotes-Actinobacteria Berlin: Springer-Verlag; 2014; pp. 201– 238
    [Google Scholar]
  28. Clavel T, Charrier C, Braune A, Wenning M, Blaut M et al. Isolation of bacteria from the ileal mucosa of TNFdeltaARE mice and description of Enterorhabdus mucosicola gen. nov., sp. nov. Int J Syst Evol Microbiol 2009; 59: 1805– 1812 [CrossRef] [PubMed]
    [Google Scholar]
  29. Clavel T, Duck W, Charrier C, Wenning M, Elson C et al. Enterorhabdus caecimuris sp. nov., a member of the family Coriobacteriaceae isolated from a mouse model of spontaneous colitis, and emended description of the genus Enterorhabdus Clavel et al. 2009. Int J Syst Evol Microbiol 2010; 60: 1527– 1531 [CrossRef] [PubMed]
    [Google Scholar]
  30. Minamida K, Ota K, Nishimukai M, Tanaka M, Abe A et al. Asaccharobacter celatus gen. nov., sp. nov., isolated from rat caecum. Int J Syst Evol Microbiol 2008; 58: 1238– 1240 [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002735
Loading
/content/journal/ijsem/10.1099/ijsem.0.002735
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error