1887

Abstract

A novel Gram-stain-negative, rod-shaped, strictly aerobic, and orange-yellow pigmented bacterium, designated strain AFPH31, was isolated from internal tissues of the scleractinian coral , cultured in a marine aquarium system at the Justus Liebig University Giessen, Germany. Phylogenetic analyses based on 16S rRNA gene sequences placed the strain within the monophyletic cluster of the genus and showed highest sequence similarity to type strains of the species (96.6 %), (96.4 %), and (96.4 %). The strain grew well at 15–37 °C (optimum 25 °C), in the presence of 0.5–8.5 % NaCl (optimum 2 %), and at pH 5.5–8.5 (optimum pH 6.0–7.5). The major cellular fatty acids of strain AFPH31 were iso-C (22.0 %), iso-C G (16.9 %), iso-C 3-OH (14.9 %), and anteiso-C (11.9 %). The major compound in the polyamine pattern was homospermidine. The quinone system contained predominantly menaquinone MK-6. The polar lipid profile contained predominantly phosphatidylethanolamine, one unidentified aminolipid, and two unidentified lipids lacking a functional group. The genomic DNA G+C content was 36.8 mol%. According to the phylogenetic, chemotaxonomic, and phenotypic analyses we propose a novel species of the genus named sp. nov. The type strain is AFPH31 (=CCM 8816=CIP 111546).

Keyword(s): coral , Pocillopora and Winogradskyella
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002731
2018-05-01
2020-01-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/5/1689.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002731&mimeType=html&fmt=ahah

References

  1. Bernardet JF, Nakagawa Y, Holmes B. Subcommittee on the taxonomy of Flavobacterium and Cytophaga-like bacteria of the International Committee on Systematics of Prokaryotes Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 2002;52:1049–1070 [CrossRef][PubMed]
    [Google Scholar]
  2. Nedashkovskaya OI, Kim SB, Han SK, Snauwaert C, Vancanneyt M et al. Winogradskyella thalassocola gen. nov., sp. nov., Winogradskyella epiphytica sp. nov. and Winogradskyella eximia sp. nov., marine bacteria of the family Flavobacteriaceae. Int J Syst Evol Microbiol 2005;55:49–55 [CrossRef][PubMed]
    [Google Scholar]
  3. Ivanova EP, Christen R, Gorshkova NM, Zhukova NV, Kurilenko VV et al. Winogradskyella exilis sp. nov., isolated from the starfish Stellaster equestris, and emended description of the genus Winogradskyella. Int J Syst Evol Microbiol 2010;60:1577–1580 [CrossRef][PubMed]
    [Google Scholar]
  4. Yoon BJ, Byun HD, Kim JY, Lee DH, Kahng HY et al. Winogradskyella lutea sp. nov., isolated from seawater, and emended description of the genus Winogradskyella. Int J Syst Evol Microbiol 2011;61:1539–1543 [CrossRef][PubMed]
    [Google Scholar]
  5. Nedashkovskaya OI, Kukhlevskiy AD, Zhukova NV. Winogradskyella ulvae sp. nov., an epiphyte of a Pacific seaweed, and emended descriptions of the genus Winogradskyella and Winogradskyella thalassocola, Winogradskyella echinorum, Winogradskyella exilis and Winogradskyella eximia. Int J Syst Evol Microbiol 2012;62:1450–1456 [CrossRef][PubMed]
    [Google Scholar]
  6. Begum Z, Srinivas TN, Manasa P, Sailaja B, Sunil B et al. Winogradskyella psychrotolerans sp. nov., a marine bacterium of the family Flavobacteriaceae isolated from Arctic sediment. Int J Syst Evol Microbiol 2013;63:1646–1652 [CrossRef][PubMed]
    [Google Scholar]
  7. Lee DH, Cho SJ, Kim SM, Lee SB. Winogradskyella damuponensis sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2013;63:321–326 [CrossRef][PubMed]
    [Google Scholar]
  8. Nedashkovskaya OI, Kukhlevskiy AD, Zhukova NV, Kim SJ, Rhee SK et al. Winogradskyella litoriviva sp. nov., isolated from coastal seawater. Int J Syst Evol Microbiol 2015;65:3652–3657 [CrossRef][PubMed]
    [Google Scholar]
  9. Zhang DC, Liu YX, Huang HJ, Weber K, Margesin R. Winogradskyella sediminis sp. nov., isolated from marine sediment. Int J Syst Evol Microbiol 2016;66:3157–3163 [CrossRef][PubMed]
    [Google Scholar]
  10. Nedashkovskaya OI, Vancanneyt M, Kim SB, Zhukova NV. Winogradskyella echinorum sp. nov., a marine bacterium of the family Flavobacteriaceae isolated from the sea urchin Strongylocentrotus intermedius. Int J Syst Evol Microbiol 2009;59:1465–1468 [CrossRef][PubMed]
    [Google Scholar]
  11. Park S, Park JM, Won SM, Yoon JH. Winogradskyella crassostreae sp. nov., isolated from an oyster (Crassostrea gigas). Int J Syst Evol Microbiol 2015;65:2890–2895 [CrossRef][PubMed]
    [Google Scholar]
  12. Lau SC, Tsoi MM, Li X, Plakhotnikova I, Dobretsov S et al. Winogradskyella poriferorum sp. nov., a novel member of the family Flavobacteriaceae isolated from a sponge in the Bahamas. Int J Syst Evol Microbiol 2005;55:1589–1592 [CrossRef][PubMed]
    [Google Scholar]
  13. Schellenberg J, Busse HJ, Hardt M, Schubert P, Wilke T et al. Winogradskyella haliclonae sp. nov., isolated from a marine sponge of the genus Haliclona. Int J Syst Evol Microbiol 2017;67:4902–4910 [CrossRef][PubMed]
    [Google Scholar]
  14. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33:1870–1874 [CrossRef][PubMed]
    [Google Scholar]
  15. Brosius J, Palmer ML, Kennedy PJ, Noller HF. Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. Proc Natl Acad Sci USA 1978;75:4801–4805 [CrossRef][PubMed]
    [Google Scholar]
  16. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67:1363–1371 [CrossRef][PubMed]
    [Google Scholar]
  17. Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014;64:346–351 [CrossRef][PubMed]
    [Google Scholar]
  18. Ludwig W, Strunk O, Westram R, Richter L, Meier H et al. ARB: a software environment for sequence data. Nucleic Acids Res 2004;32:1363–1371 [CrossRef][PubMed]
    [Google Scholar]
  19. Yarza P, Richter M, Peplies J, Euzeby J, Amann R et al. The All-Species Living Tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. Syst Appl Microbiol 2008;31:241–250 [CrossRef][PubMed]
    [Google Scholar]
  20. Pruesse E, Peplies J, Glöckner FO. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 2012;28:1823–1829 [CrossRef][PubMed]
    [Google Scholar]
  21. Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 2006;22:2688–2690 [CrossRef][PubMed]
    [Google Scholar]
  22. Felsenstein J. PHYLIP (Phylogeny Inference Package) Version 3.6 Distributed by the author Department of Genome Sciences, University of Washington, Seattle; 2005
    [Google Scholar]
  23. Jukes TH, Cantor CR. Evolution of protein molecules. In Munro HN. (editor) Mammalian Protein Metabolism New York: Academic Press; 1969; pp.21–132[Crossref]
    [Google Scholar]
  24. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39:783–791 [CrossRef][PubMed]
    [Google Scholar]
  25. Pitcher DG, Saunders NA, Owen RJ. Rapid extraction of bacterial genomic DNA with guanidium thiocyanate. Lett Appl Microbiol 1989;8:151–156 [CrossRef]
    [Google Scholar]
  26. Gonzalez JM, Saiz-Jimenez C. A fluorimetric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. Environ Microbiol 2002;4:770–773[PubMed][Crossref]
    [Google Scholar]
  27. Glaeser SP, Falsen E, Martin K, Kämpfer P. Alicyclobacillus consociatus sp. nov., isolated from a human clinical specimen. Int J Syst Evol Microbiol 2013;63:3623–3627 [CrossRef][PubMed]
    [Google Scholar]
  28. Park S, Park JM, Won SM, Bae KS, Yoon JH. Winogradskyella wandonensis sp. nov., isolated from a tidal flat. Int J Syst Evol Microbiol 2014;64:1520–1525 [CrossRef][PubMed]
    [Google Scholar]
  29. Gerhardt P, Murray RGE, Wood WA, Krieg NR. Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994
    [Google Scholar]
  30. Reichenbach H. Flavobacteriaceae fam. nov. In validation of the publication of new names and new combinations previously effectively published outside the IJSB, List No. Int J Syst Bacteriol 1992;42:327–329[Crossref]
    [Google Scholar]
  31. Jones KL. Fresh isolates of actinomycetes in which the presence of sporogenous aerial mycelia is a fluctuating characteristic. J Bacteriol 1949;57:141–145[PubMed]
    [Google Scholar]
  32. Kämpfer P, Steiof M, Dott W. Microbiological characterization of a fuel-oil contaminated site including numerical identification of heterotrophic water and soil bacteria. Microb Ecol 1991;21:227–251 [CrossRef][PubMed]
    [Google Scholar]
  33. Zhang DC, Liu YX, Huang HJ, Weber K, Margesin R. Winogradskyella sediminis sp. nov., isolated from marine sediment. Int J Syst Evol Microbiol 2016;66:3157–3163 [CrossRef][PubMed]
    [Google Scholar]
  34. Kim SJ, Choi YR, Park SJ, Kim JG, Shin KS et al. Winogradskyella pulchriflava sp. nov., isolated from marine sediment. Int J Syst Evol Microbiol 2013;63:3062–3068 [CrossRef][PubMed]
    [Google Scholar]
  35. Kämpfer P, Kroppenstedt RM. Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 1996;42:989–1005 [CrossRef]
    [Google Scholar]
  36. Busse H-J, Auling G. Polyamine pattern as a chemotaxonomic marker within the Proteobacteria. Syst Appl Microbiol 1988;11:1–8 [CrossRef]
    [Google Scholar]
  37. Busse H-J, Bunka S, Hensel A, Lubitz W. Discrimination of members of the family Pasteurellaceae based on polyamine patterns. Int J Syst Bacteriol 1997;47:698–708 [CrossRef]
    [Google Scholar]
  38. Stolz A, Busse HJ, Kämpfer P. Pseudomonas knackmussii sp. nov. Int J Syst Evol Microbiol 2007;57:572–576 [CrossRef][PubMed]
    [Google Scholar]
  39. Auling G, Busse H-J, Pilz F, Webb L, Kneifel H et al. Rapid differentiation, by polyamine analysis, of Xanthomonas strains from phytopathogenic pseudomonads and other members of the class Proteobacteria interacting with plants. Int J Syst Bacteriol 1991;41:223–228 [CrossRef]
    [Google Scholar]
  40. Tindall BJ. A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 1990;13:128–130 [CrossRef]
    [Google Scholar]
  41. Tindall BJ. Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 1990;66:199–202 [CrossRef]
    [Google Scholar]
  42. Altenburger P, Kämpfer P, Makristathis A, Lubitz W, Busse HJ. Classification of bacteria isolated from a medieval wall painting. J Biotechnol 1996;47:39–52 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002731
Loading
/content/journal/ijsem/10.1099/ijsem.0.002731
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error