1887

Abstract

A novel, alkaliphilic, psychrotolerant, facultative anaerobe, designated CP1, was isolated from sandy soil near the Davis Station in Antarctica. The short-rod-shaped cells displayed Gram-positive staining and did not form spores. Strain CP1 was able to grow at temperatures between 4 and 36 °C, pH 6.0–9.5, and in the presence of up to 5.0 % (w/v) NaCl. 16S rRNA gene and multilocus (pheS, rpoA, and atpA) sequence analysis revealed Carnobacterium mobile DSM 4848 and Carnobacterium iners LMG 26642 as the closest relatives (97.4 and 97.1 % 16S rRNA gene sequence similarity, respectively). The genomic G+C content was 38.1 mol%, and DNA–DNA hybridization with DSM 4848 revealed 32.4±3.4 % similarity. The major fatty acid components were C14 : 0 and C16 : 1ω9c. The cell wall contained meso-diaminopimelic acid and was of peptidoglycan type A1γ. Based on physiological, genotypic and biochemical characteristics, strain CP1 represents a novel species of the genus Carnobacterium for which the name Carnobacterium antarcticum sp. nov. is proposed. The type strain is CP1 (=DSM 103363=CGMCC 1.15643).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002727
2018-04-04
2019-10-13
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/5/1672.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002727&mimeType=html&fmt=ahah

References

  1. Collins MD, Farrow JAE, Phillips BA, Ferusu S, Jones D. Classification of Lactobacillus divergens, Lactobacillus piscicola, and some catalase-negative, asporogenous, rod-shaped bacteria from poultry in a new genus, Carnobacterium. Int J Syst Bacteriol 1987; 37: 310– 316 [CrossRef]
    [Google Scholar]
  2. Mora D, Scarpellini M, Franzetti L, Colombo S, Galli A. Reclassification of Lactobacillus maltaromicus (Miller et al. 1974) DSM 20342T and DSM 20344 and Carnobacterium piscicola (Collins et al. 1987) DSM 20730T and DSM 20722 as Carnobacterium maltaromaticum comb. nov. Int J Syst Evol Microbiol 2003; 53: 675– 678 [CrossRef] [PubMed]
    [Google Scholar]
  3. Nicholson WL, Zhalnina K, de Oliveira RR, Triplett EW. Proposal to rename Carnobacterium inhibens as Carnobacterium inhibens subsp. inhibens subsp. nov. and description of Carnobacterium inhibens subsp. gilichinskyi subsp. nov., a psychrotolerant bacterium isolated from Siberian permafrost. Int J Syst Evol Microbiol 2015; 65: 556– 561 [CrossRef] [PubMed]
    [Google Scholar]
  4. Cailliez-Grimal C, Afzal MI, Revol-Junelles AM. Carnobacterium. In Batt CA, Tortorello ML. (editors) Enocyclopedia Of Food Microbiology, 2nd ed. Amsterdam: Academic Press Elsevier; 2014; pp. 379– 383 [Crossref]
    [Google Scholar]
  5. Leisner JJ, Laursen BG, Prévost H, Drider D, Dalgaard P. Carnobacterium: positive and negative effects in the environment and in foods. FEMS Microbiol Rev 2007; 31: 592– 613 [CrossRef] [PubMed]
    [Google Scholar]
  6. Zhu S, Wang X, Zhang D, Jing X, Zhang N et al. Complete genome sequence of hemolysin-containing Carnobacterium sp. strain CP1 isolated from the Antarctic. Genome Announc 2016; 4: e00690-16 [CrossRef] [PubMed]
    [Google Scholar]
  7. Tan TL, Rüger HJ. Enrichment, isolation, and biolog metabolic fingerprints of oligotrophic bacteria from the Antarctic Ocean. Arch Hydrobiol Spec Issues 1999; 54: 255– 272
    [Google Scholar]
  8. Wang X, Lin D, Jing X, Zhu S, Yang J et al. Complete genome sequence of the highly Mn(II) tolerant Staphylococcus sp. antiMn-1 isolated from deep-sea sediment in the Clarion-Clipperton Zone. J Biotechnol 2018; 266: 34– 38 [CrossRef] [PubMed]
    [Google Scholar]
  9. Van Trappen S, Tan TL, Yang J, Mergaert J, Swings J. Alteromonas stellipolaris sp. nov., a novel, budding, prosthecate bacterium from Antarctic seas, and emended description of the genus Alteromonas. Int J Syst Evol Microbiol 2004; 54: 1157– 1163 [CrossRef] [PubMed]
    [Google Scholar]
  10. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33: 1870– 1874 [CrossRef] [PubMed]
    [Google Scholar]
  11. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17: 368– 376 [CrossRef] [PubMed]
    [Google Scholar]
  12. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4: 406– 425 [CrossRef] [PubMed]
    [Google Scholar]
  13. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20: 406– 416 [CrossRef]
    [Google Scholar]
  14. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39: 783– 791 [CrossRef] [PubMed]
    [Google Scholar]
  15. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16: 111– 120 [CrossRef] [PubMed]
    [Google Scholar]
  16. Snauwaert I, Hoste B, de Bruyne K, Peeters K, De Vuyst L et al. Carnobacterium iners sp. nov., a psychrophilic, lactic acid-producing bacterium from the littoral zone of an Antarctic pond. Int J Syst Evol Microbiol 2013; 63: 1370– 1375 [CrossRef] [PubMed]
    [Google Scholar]
  17. Leonard MT, Panayotova N, Farmerie WG, Triplett EW, Nicholson WL. Complete genome sequence of Carnobacterium gilichinskyi strain WN1359T (DSM 27470T). Genome Announc 2013; 1: e00985-13 [CrossRef] [PubMed]
    [Google Scholar]
  18. Naser SM, Thompson FL, Hoste B, Gevers D, Dawyndt P et al. Application of multilocus sequence analysis (MLSA) for rapid identification of Enterococcus species based on rpoA and pheS genes. Microbiology 2005; 151: 2141– 2150 [CrossRef] [PubMed]
    [Google Scholar]
  19. Naser SM, Dawyndt P, Hoste B, Gevers D, Vandemeulebroecke K et al. Identification of lactobacilli by pheS and rpoA gene sequence analyses. Int J Syst Evol Microbiol 2007; 57: 2777– 2789 [CrossRef] [PubMed]
    [Google Scholar]
  20. De Bruyne K, Franz CM, Vancanneyt M, Schillinger U, Mozzi F et al. Pediococcus argentinicus sp. nov. from Argentinean fermented wheat flour and identification of Pediococcus species by pheS, rpoA and atpA sequence analysis. Int J Syst Evol Microbiol 2008; 58: 2909– 2916 [CrossRef] [PubMed]
    [Google Scholar]
  21. Naser S, Thompson FL, Hoste B, Gevers D, Vandemeulebroecke K et al. Phylogeny and identification of Enterococci by atpA gene sequence analysis. J Clin Microbiol 2005; 43: 2224– 2230 [CrossRef] [PubMed]
    [Google Scholar]
  22. Cashion P, Holder-Franklin MA, McCully J, Franklin M. A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 1977; 81: 461– 466 [CrossRef] [PubMed]
    [Google Scholar]
  23. De Ley J, Cattoir H, Reynaerts A. The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 1970; 12: 133– 142 [CrossRef] [PubMed]
    [Google Scholar]
  24. Huss VA, Festl H, Schleifer KH. Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 1983; 4: 184– 192 [CrossRef] [PubMed]
    [Google Scholar]
  25. Stackebrandt E, Goebel BM. Taxonomic Note: a place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 1994; 44: 846– 849 [CrossRef]
    [Google Scholar]
  26. Yoon SH, Ha SM, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110: 1281– 1286 [CrossRef] [PubMed]
    [Google Scholar]
  27. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57: 81– 91 [CrossRef] [PubMed]
    [Google Scholar]
  28. Miller LT. A single derivatization method for bacterial fatty acid methyl esters including hydroxy acids. J. Clin Microbiol 1982; 16: 584– 586
    [Google Scholar]
  29. Kuykendall LD, Roy MA, O'Neill JJ, Devine TE. Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. Int J Syst Bacteriol 1988; 38: 358– 361 [CrossRef]
    [Google Scholar]
  30. Franzmann PD, Höpfl P, Weiss N, Tindall BJ. Psychrotrophic, lactic acid-producing bacteria from anoxic waters in Ace Lake, Antarctica; Carnobacterium funditum sp. nov. and Carnobacterium alterfunditum sp. nov. Arch Microbiol 1991; 156: 255– 262 [CrossRef] [PubMed]
    [Google Scholar]
  31. Schumann P. 5-Peptidoglycan structure. In Rainey F, Oren A. (editors) Methods in Microbiology Cambridge, MA: Academic Press; 2011; pp. 101– 129
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002727
Loading
/content/journal/ijsem/10.1099/ijsem.0.002727
Loading

Data & Media loading...

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error