1887

Abstract

The genus (initially named ) is currently placed within the phylum . Early 16S rRNA gene based phylogenetic studies pointed out the great differences between and other members of the , revealing that it constitutes a new deep branching lineage. Over the years, several studies based on 16S rRNA gene and whole genome sequences have indicated that is very distant phylogenetically to all other bacteria, supporting its placement in a distinct deeply rooted novel phylum. In view of this, we propose its allocation to the new family within the novel order , the new class , and the new phylum , and an emended description of the family .

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002720
2018-05-01
2020-01-26
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/5/1627.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002720&mimeType=html&fmt=ahah

References

  1. Rainey FA, Stackebrandt E. Transfer of the type species of the genus Thermobacteroides to the genus Thermoanaerobacter as Thermoanaerobacter acetoethylicus (Ben-Bassat and Zeikus 1981) comb. nov., description of Coprothermobacter gen. nov., and reclassification of Thermobacteroides proteolyticus as Coprothermobacter proteolyticus (Ollivier et al. 1985) comb. nov. Int J Syst Bacteriol 1993;43:857–859 [CrossRef]
    [Google Scholar]
  2. Ollivier BM, Mah RA, Ferguson TJ, Boone DR, Garcia JL et al. Emendation of the genus Thermobacteroides: Thermobacteroides proteolyticus sp. nov., a proteolytic acetogen from a methanogenic enrichment. Int J Syst Bacteriol 1985;35:425–428 [CrossRef]
    [Google Scholar]
  3. Rainey FA, Stackebrandt E. Phylogenetic analysis of the bacterial genus Thermobacteroides indicates an ancient origin of Thermobacteroides proteolyticus. Lett Appl Microbiol 1993;16:282–286 [CrossRef]
    [Google Scholar]
  4. Alexiev A, Coil DA, Badger JH, Enticknap J, Ward N et al. Complete genome sequence of Coprothermobacter proteolyticus DSM 5265. Genome Announc 2014;2:e00470-14 [CrossRef][PubMed]
    [Google Scholar]
  5. Etchebehere C, Pavan ME, Zorzópulos J, Soubes M, Muxí L. Coprothermobacter platensis sp. nov., a new anaerobic proteolytic thermophilic bacterium isolated from an anaerobic mesophilic sludge. Int J Syst Bacteriol 1998;48:1297–1304 [CrossRef][PubMed]
    [Google Scholar]
  6. Gagliano MC, Braguglia CM, Petruccioli M, Rossetti S. Ecology and biotechnological potential of the thermophilic fermentative Coprothermobacter spp. FEMS Microbiol Ecol 2015;91: [CrossRef][PubMed]
    [Google Scholar]
  7. De Vos P, Garrity G, Jones D, Krieg NR, Ludwig W et al. Bergey's Manual of Systematic Bacteriology Volume 3: The Firmicutes, 2nd ed. New York: Springer; 2009
    [Google Scholar]
  8. Mori K, Kim H, Kakegawa T, Hanada S. A novel lineage of sulfate-reducing microorganisms: Thermodesulfobiaceae fam. nov., Thermodesulfobium narugense, gen. nov., sp. nov., a new thermophilic isolate from a hot spring. Extremophiles 2003;7:283–290 [CrossRef][PubMed]
    [Google Scholar]
  9. Hania WB, Ollivier B, Fardeau ML. The family Thermodesulfobiaceae. In Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F. (editors) The Prokaryotes. Firmicutes and Tenericutes Berlin, Heidelberg: Springer; 2014; pp.421–426
    [Google Scholar]
  10. Frolov EN, Kublanov IV, Toshchakov SV, Samarov NI, Novikov AA et al. Thermodesulfobium acidiphilum sp. nov., a thermoacidophilic, sulfate-reducing, chemoautotrophic bacterium from a thermal site. Int J Syst Evol Microbiol 2017;67:1482–1485 [CrossRef][PubMed]
    [Google Scholar]
  11. Ludwig W, Schleifer KH, Whitman WB. Revised road map to the phylum Firmicutes. In De Vos G, Garrity D, Jones NR, Krieg W, Ludwig F et al. (editors) Bergey’s Manual of Systematic Bacteriology New York: Springer; 2009; pp.1–14
    [Google Scholar]
  12. Hugenholtz P, Goebel BM, Pace NR. Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J Bacteriol 1998;180:4765–4774[PubMed]
    [Google Scholar]
  13. Schloss PD, Handelsman J. Status of the microbial census. Microbiol Mol Biol Rev 2004;68:686–691 [CrossRef][PubMed]
    [Google Scholar]
  14. Munoz R, Yarza P, Ludwig W, Euzéby J, Amann R et al. Release LTPs104 of the All-Species Living Tree. Syst Appl Microbiol 2011;34:169–170 [CrossRef][PubMed]
    [Google Scholar]
  15. Beiko RG. Telling the whole story in a 10,000-genome world. Biol Direct 2011;6:34 [CrossRef][PubMed]
    [Google Scholar]
  16. Nishida H, Beppu T, Ueda K. Whole-genome comparison clarifies close phylogenetic relationships between the phyla Dictyoglomi and Thermotogae. Genomics 2011;98:370–375 [CrossRef][PubMed]
    [Google Scholar]
  17. Yutin N, Puigbò P, Koonin EV, Wolf YI. Phylogenomics of prokaryotic ribosomal proteins. PLoS One 2012;7:e36972 [CrossRef][PubMed]
    [Google Scholar]
  18. Beiko RG, Harlow TJ, Ragan MA. Highways of gene sharing in prokaryotes. Proc Natl Acad Sci USA 2005;102:14332–14337 [CrossRef][PubMed]
    [Google Scholar]
  19. Lang JM, Darling AE, Eisen JA. Phylogeny of bacterial and archaeal genomes using conserved genes: supertrees and supermatrices. PLoS One 2013;8:e62510 [CrossRef][PubMed]
    [Google Scholar]
  20. Whidden C, Zeh N, Beiko RG. Supertrees based on the subtree prune-and-regraft distance. Syst Biol 2014;63:566–581 [CrossRef][PubMed]
    [Google Scholar]
  21. Segata N, Börnigen D, Morgan XC, Huttenhower C. PhyloPhlAn is a new method for improved phylogenetic and taxonomic placement of microbes. Nat Commun 2013;4:2304 [CrossRef][PubMed]
    [Google Scholar]
  22. Mori K, Yamaguchi K, Sakiyama Y, Urabe T, Suzuki K. Caldisericum exile gen. nov., sp. nov., an anaerobic, thermophilic, filamentous bacterium of a novel bacterial phylum, Caldiserica phyl. nov., originally called the candidate phylum OP5, and description of Caldisericaceae fam. nov., Caldisericales ord. nov. and Caldisericia classis nov. Int J Syst Evol Microbiol 2009;59:2894–2898 [CrossRef][PubMed]
    [Google Scholar]
  23. Zuo G, Hao B. CVTree3 web server for whole-genome-based and alignment-free prokaryotic phylogeny and taxonomy. Genomics Proteomics Bioinformatics 2015;13:321–331 [CrossRef][PubMed]
    [Google Scholar]
  24. Hao B, Qi J. Prokaryote phylogeny without sequence alignment: from avoidance signature to composition distance. J Bioinform Comput Biol 2004;2:1–19 [CrossRef][PubMed]
    [Google Scholar]
  25. Bromberg R, Grishin NV, Otwinowski Z. Phylogeny reconstruction with alignment-free method that corrects for horizontal gene transfer. PLoS Comput Biol 2016;12:e1004985 [CrossRef][PubMed]
    [Google Scholar]
  26. Kunisawa T. Evolutionary relationships of completely sequenced Clostridia species and close relatives. Int J Syst Evol Microbiol 2015;65:4276–4283 [CrossRef][PubMed]
    [Google Scholar]
  27. Zhang W, Lu Z. Phylogenomic evaluation of members above the species level within the phylum Firmicutes based on conserved proteins. Environ Microbiol Rep 2015;7:273–281 [CrossRef][PubMed]
    [Google Scholar]
  28. Mukherjee S, Seshadri R, Varghese NJ, Eloe-Fadrosh EA, Meier-Kolthoff JP et al. 1,003 reference genomes of bacterial and archaeal isolates expand coverage of the tree of life. Nat Biotechnol 2017;35:676–683 [CrossRef][PubMed]
    [Google Scholar]
  29. Markowitz VM, Chen IM, Palaniappan K, Chu K, Szeto E et al. IMG 4 version of the integrated microbial genomes comparative analysis system. Nucleic Acids Res 2014;42:D560–D567 [CrossRef][PubMed]
    [Google Scholar]
  30. Zhaxybayeva O, Swithers KS, Lapierre P, Fournier GP, Bickhart DM et al. On the chimeric nature, thermophilic origin, and phylogenetic placement of the Thermotogales. Proc Natl Acad Sci USA 2009;106:5865–5870 [CrossRef][PubMed]
    [Google Scholar]
  31. Etchebehere C, Muxí L. Thiosulfate reduction and alanine production in glucose fermentation by members of the genus Coprothermobacter. Antonie van Leeuwenhoek 2000;77:321–327 [CrossRef][PubMed]
    [Google Scholar]
  32. Ravot G, Ollivier B, Magot M, Patel B, Crolet J et al. Thiosulfate reduction, an important physiological feature shared by members of the order Thermotogales. Appl Environ Microbiol 1995;61:2053–2055[PubMed]
    [Google Scholar]
  33. Kengen SWM, Stams AJM. Formation of L-alanine as a reduced end product in carbohydrate fermentation by the hyperthermophilic archaeon Pyrococcus furiosus. Arch Microbiol 1994;161:168–175[Crossref]
    [Google Scholar]
  34. Kobayashi T, Higuchi S, Kimura K, Kudo T, Horikoshi K. Properties of glutamate dehydrogenase and its involvement in alanine production in a hyperthermophilic archaeon, Thermococcus profundus. J Biochem 1995;118:587–592 [CrossRef][PubMed]
    [Google Scholar]
  35. Ravot G, Ollivier B, Fardeau ML, Patel BK, Andrews KT et al. L-alanine production from glucose fermentation by hyperthermophilic members of the domains Bacteria and Archaea: a remnant of an ancestral metabolism?. Appl Environ Microbiol 1996;62:2657–2659[PubMed]
    [Google Scholar]
  36. Parker CT, Tindall BJ, Garrity GM. International Code of Nomenclature of Prokaryotes. Prokaryotic Code (2008 Revision). Int J Syst Evol Microbiol 2016; doi:10.1099/ijsem.0.000778
    [Google Scholar]
  37. Whitman WB, Oren A, Chuvochina M, da Costa MS, Garrity GM et al. Proposal of the suffix -ota to denote phyla. Addendum to 'Proposal to include the rank of phylum in the International Code of Nomenclature of Prokaryotes'. Int J Syst Evol Microbiol 2018;68:967–969 [CrossRef][PubMed]
    [Google Scholar]
  38. Hugenholtz P. Exploring prokaryotic diversity in the genomic era. Genome Biol 2002;3:reviews0003.1 [CrossRef][PubMed]
    [Google Scholar]
  39. Kunisawa T. Evaluation of the phylogenetic position of the sulfate-reducing bacterium Thermodesulfovibrio yellowstonii (phylum Nitrospirae) by means of gene order data from completely sequenced genomes. Int J Syst Evol Microbiol 2010;60:1090–1102 [CrossRef][PubMed]
    [Google Scholar]
  40. Wrighton KC, Agbo P, Warnecke F, Weber KA, Brodie EL et al. A novel ecological role of the Firmicutes identified in thermophilic microbial fuel cells. ISME J 2008;2:1146–1156 [CrossRef][PubMed]
    [Google Scholar]
  41. Chen Y, Xiao K, Jiang X, Shen N, Zeng RJ et al. In-situ sludge pretreatment in a single-stage anaerobic digester. Bioresour Technol 2017;238:102–108 [CrossRef][PubMed]
    [Google Scholar]
  42. Fitamo T, Treu L, Boldrin A, Sartori C, Angelidaki I et al. Microbial population dynamics in urban organic waste anaerobic co-digestion with mixed sludge during a change in feedstock composition and different hydraulic retention times. Water Res 2017;118:261–271 [CrossRef][PubMed]
    [Google Scholar]
  43. Hagen LH, Frank JA, Zamanzadeh M, Eijsink VG, Pope PB et al. Quantitative metaproteomics highlight the metabolic contributions of uncultured phylotypes in a thermophilic anaerobic digester. Appl Environ Microbiol 2017;83:e01955-16 [CrossRef][PubMed]
    [Google Scholar]
  44. Sasaki K, Morita M, Sasaki D, Nagaoka J, Matsumoto N et al. Syntrophic degradation of proteinaceous materials by the thermophilic strains Coprothermobacter proteolyticus and Methanothermobacter thermautotrophicus. J Biosci Bioeng 2011;112:469–472 [CrossRef][PubMed]
    [Google Scholar]
  45. Yarza P, Richter M, Peplies J, Euzeby J, Amann R et al. The All-Species Living Tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. Syst Appl Microbiol 2008;31:241–250 [CrossRef][PubMed]
    [Google Scholar]
  46. Ludwig W, Strunk O, Westram R, Richter L, Meier H et al. ARB: a software environment for sequence data. Nucleic Acids Res 2004;32:1363–1371 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002720
Loading
/content/journal/ijsem/10.1099/ijsem.0.002720
Loading

Data & Media loading...

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error