1887

Abstract

A novel actinomycete strain, designated GKU 128, isolated from the roots of an Indian oak tree [Barringtonia acutangula (L.) Gaertn.] at Khao Khitchakut district, Chantaburi province, Thailand, was characterized by using a polyphasic approach. The strain formed a branched substrate and aerial mycelia which differentiated into straight to flexuous chains of smooth-ornamented spores. Analysis of the cell wall revealed the presence of meso-diaminopimelic acid and N-acetylmuramic acid in the peptidoglycan. The whole-cell sugars were glucose, madurose, mannose, rhamnose and ribose. Mycolic acids were absent. The major phospholipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol and phosphatidylinositolmannoside. The predominant menaquinones were MK-9(H6), MK-9(H8), MK-9(H0) and MK-9(H4). The major fatty acids were C16 : 0, C18 : 1ω9c and 10-methyl C18 : 0 (tuberculostearic acid). The genomic DNA G+C content was 70.5 mol%. Based on 16S rRNA gene sequence analysis, strain GKU 128 was closely related to the type strains of Actinomadura nitritigenes NBRC 15918 (99.2 % sequence similarity) and Actinomadura fibrosa JCM 9371 (98.7 %). The levels of DNA–DNA relatedness between strain GKU 128 and the closely related type species were less than 19 %. On the basis of phenotypic and genotypic characteristics, strain GKU 128 could be distinguished from its closely related type strains and represents a novel species of the genus Actinomadura , for which the name Actinomadura barringtoniae sp. nov. (=TBRC 7225=NBRC 113074) is proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002714
2018-03-15
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/5/1584.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002714&mimeType=html&fmt=ahah

References

  1. Lechevalier H, Lechevalier MP. A critical evaluation of the genera of aerobic actinomycetes. In Prauser H. (editor) The Actinomycetales: The Jena International Symposium on Taxonomy Germany: Gustav Fischer Verlag; 1970; pp. 393– 405
    [Google Scholar]
  2. Zhang Z, Kudo T, Nakajima Y, Wang Y. Clarification of the relationship between the members of the family Thermomonosporaceae on the basis of 16S rDNA, 16S-23S rRNA internal transcribed spacer and 23S rDNA sequences and chemotaxonomic analyses. Int J Syst Evol Microbiol 2001; 51: 373– 383 [CrossRef] [PubMed]
    [Google Scholar]
  3. Tamura T, Ishida Y, Nozawa Y, Otoguro M, Suzuki K. Transfer of Actinomadura spadix Nonomura and Ohara 1971 to Actinoallomurus spadix gen. nov., comb. nov., and description of Actinoallomurus amamiensis sp. nov., Actinoallomurus caesius sp. nov., Actinoallomurus coprocola sp. nov., Actinoallomurus fulvus sp. nov., Actinoallomurus iriomotensis sp. nov., Actinoallomurus luridus sp. nov., Actinoallomurus purpureus sp. nov. and Actinoallomurus yoronensis sp. nov. Int J Syst Evol Microbiol 2009; 59: 1867– 1874 [CrossRef] [PubMed]
    [Google Scholar]
  4. Ay H, Nouioui I, del Carmen Montero-Calasanz M, Carro L, Klenk HP et al. Actinomadura alkaliterrae sp. nov., isolated from an alkaline soil. Antonie van Leeuwenhoek 2017; 110: 787– 794 [CrossRef] [PubMed]
    [Google Scholar]
  5. Trujillo M, Goodfellow M. Genus III. Actinomadura Lechevalier and Lechevalier 1970, 400AL emend. Kroppenstedt, Stackebrandt and Goodfellow 1990, 156. In Goodfellow M, Kämpfer P, Busse MJ, Trujillo ME, Suzuki KL et al. (editors) Bergey’s Manual of Systematic Bacteriology, 2nd ed.vol. 5 The Actinobacteria, Part B New York: Springer; 2012; pp. 1940– 1959 [Crossref]
    [Google Scholar]
  6. Jiao JY, Liu L, Zhou EM, Wei DQ, Ming H et al. Actinomadura amylolytica sp. nov. and Actinomadura cellulosilytica sp. nov., isolated from geothermally heated soil. Antonie van Leeuwenhoek 2015; 108: 75– 83 [Crossref]
    [Google Scholar]
  7. Zhao J, Guo L, Sun P, Han C, Bai L et al. Actinomadura jiaoheensis sp. nov. and Actinomadura sporangiiformans sp. nov., two novel actinomycetes isolated from muddy soil and emended description of the genus Actinomadura. Antonie van Leeuwenhoek 2015; 108: 1331– 1339 [CrossRef] [PubMed]
    [Google Scholar]
  8. Songsumanus A, Kudo T, Ohkuma M, Phongsopitanun W, Tanasupawat S. Actinomadura montaniterrae sp. nov., isolated from mountain soil. Int J Syst Evol Microbiol 2016; 66: 3310– 3316 [CrossRef] [PubMed]
    [Google Scholar]
  9. Lee SD. Actinomadura meridiana sp. nov., isolated from mountain soil. Int J Syst Evol Microbiol 2012; 62: 217– 222 [CrossRef] [PubMed]
    [Google Scholar]
  10. Phongsopitanun W, Tanasupawat S, Suwanborirux K, Ohkuma M, Kudo T. Actinomadura rayongensis sp. nov., isolated from peat swamp forest soil. Int J Syst Evol Microbiol 2015; 65: 890– 895 [CrossRef] [PubMed]
    [Google Scholar]
  11. Lahoum A, Bouras N, Mathieu F, Schumann P, Spröer C et al. Actinomadura algeriensis sp. nov., an actinobacterium isolated from Saharan soil. Antonie van Leeuwenhoek 2016; 109: 159– 165 [CrossRef] [PubMed]
    [Google Scholar]
  12. Lahoum A, Bouras N, Verheecke C, Mathieu F, Schumann P et al. Actinomadura adrarensis sp. nov., an actinobacterium isolated from Saharan soil. Int J Syst Evol Microbiol 2016; 66: 2724– 2729 [CrossRef] [PubMed]
    [Google Scholar]
  13. Trujillo ME, Goodfellow M. Polyphasic taxonomic study of clinically significant actinomadurae including the description of Actinomadura latina sp.nov. Zentralbl Bakteriol 1997; 285: 212– 233 [CrossRef] [PubMed]
    [Google Scholar]
  14. Hanafy A, Ito J, Iida S, Kang Y, Kogure T et al. Majority of Actinomadura clinical isolates from sputa or bronchoalveolar lavage fluid in Japan belongs to the cluster of Actinomadura cremea and Actinomadura nitritigenes, and the description of Actinomadura chibensis sp. nov. Mycopathologia 2006; 162: 281– 287 [CrossRef] [PubMed]
    [Google Scholar]
  15. Yassin AF, Spröer C, Siering C, Klenk HP. Actinomadura sputi sp. nov., isolated from the sputum of a patient with pulmonary infection. Int J Syst Evol Microbiol 2010; 60: 149– 153 [CrossRef] [PubMed]
    [Google Scholar]
  16. Qin S, Zhao GZ, Li J, Zhu WY, Xu LH et al. Actinomadura flavalba sp. nov., an endophytic actinomycete isolated from leaves of Maytenus austroyunnanensis. Int J Syst Evol Microbiol 2009; 59: 2453– 2457 [CrossRef] [PubMed]
    [Google Scholar]
  17. Rachniyom H, Matsumoto A, Indananda C, Duangmal K, Takahashi Y et al. Actinomadura syzygii sp. nov., an endophytic actinomycete isolated from the roots of a jambolan plum tree (Syzygium cumini L. Skeels). Int J Syst Evol Microbiol 2015; 65: 1946– 1949 [CrossRef] [PubMed]
    [Google Scholar]
  18. Rachniyom H, Matsumoto A, Indananda C, Duangmal K, Takahashi Y et al. Nonomuraea syzygii sp. nov., an endophytic actinomycete isolated from the roots of a jambolan plum tree (Syzygium cumini L. Skeels). Int J Syst Evol Microbiol 2015; 65: 1234– 1240 [CrossRef] [PubMed]
    [Google Scholar]
  19. Kuester E, Williams ST. Selection of media for isolation of Streptomycetes. Nature 1964; 202: 928– 929 [CrossRef] [PubMed]
    [Google Scholar]
  20. Hobbs G, Frazer C, Gardner DJ, Cullum J, Oliver S. Dispersed growth of Streptomyces in liquid culture. Appl Microbiol Biotechnol 1989; 31: 272– 277 [CrossRef]
    [Google Scholar]
  21. Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol 1966; 16: 313– 340 [CrossRef]
    [Google Scholar]
  22. Jacobson E, Granville WC, Fog CE. Color Harmony Manual, 4th ed. Chicago, USA: Container Corporation of America; 1958
    [Google Scholar]
  23. Matsumoto A, Takahashi Y, Kudo T, Seino A, Iwai Y et al. Actinoplanes capillaceus sp. nov., a new species of the genus Actinoplanes. Antonie van Leeuwenhoek 2000; 78: 107– 115 [CrossRef] [PubMed]
    [Google Scholar]
  24. Gordon RE, Barnett DA, Handerhan JE, Pang CH-N. Nocardia coeliaca, Nocardia autotrophica, and the nocardin strain. Int J Syst Bacteriol 1974; 24: 54– 63 [CrossRef]
    [Google Scholar]
  25. Sierra G. A simple method for the detection of lipolytic activity of micro-organisms and some observations on the influence of the contact between cells and fatty substrates. Antonie van Leeuwenhoek 1957; 23: 15– 22 [CrossRef] [PubMed]
    [Google Scholar]
  26. Williams ST, Goodfellow M, Alderson G, Wellington EM, Sneath PH et al. Numerical classification of Streptomyces and related genera. J Gen Microbiol 1983; 129: 1743– 1813 [CrossRef] [PubMed]
    [Google Scholar]
  27. Hasegawa T, Takizawa M, Tanida S. A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol 1983; 29: 319– 322 [CrossRef]
    [Google Scholar]
  28. Staneck JL, Roberts GD. Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 1974; 28: 226– 231 [PubMed]
    [Google Scholar]
  29. Uchida K, Aida KO. An improved method for the glycolate test for simple identification of the acyl type of bacterial cell walls. J Gen Appl Microbiol 1984; 30: 131– 134 [CrossRef]
    [Google Scholar]
  30. Tomiyasu I. Mycolic acid composition and thermally adaptative changes in Nocardia asteroides. J Bacteriol 1982; 151: 828– 837 [PubMed]
    [Google Scholar]
  31. Minnikin DE, Patel PV, Alshamaony L, Goodfellow M. Polar lipid composition in the classification of Nocardia and related bacteria. Int J Syst Bacteriol 1977; 27: 104– 117 [CrossRef]
    [Google Scholar]
  32. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977; 100: 221– 230 [CrossRef] [PubMed]
    [Google Scholar]
  33. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, Technical Note 101. Newark, DE: Microbial ID Inc; 1990
    [Google Scholar]
  34. Tamaoka J, Komagata K. Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 1984; 25: 125– 128 [CrossRef]
    [Google Scholar]
  35. Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA et al. Practical Streptomyces Genetics Norwich, United Kingdom: The John Innes Foundation; 2000
    [Google Scholar]
  36. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67: 1613– 1617 [CrossRef] [PubMed]
    [Google Scholar]
  37. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007; 23: 2947– 2948 [CrossRef] [PubMed]
    [Google Scholar]
  38. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4: 406– 425 [CrossRef] [PubMed]
    [Google Scholar]
  39. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17: 368– 376 [CrossRef] [PubMed]
    [Google Scholar]
  40. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20: 406– 416 [CrossRef]
    [Google Scholar]
  41. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33: 1870– 1874 [CrossRef] [PubMed]
    [Google Scholar]
  42. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16: 111– 120 [CrossRef] [PubMed]
    [Google Scholar]
  43. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39: 783– 791 [CrossRef] [PubMed]
    [Google Scholar]
  44. Lechevalier MP, Lechevalier H. Composition of whole-cell hydrolysates as a criterion in the classification of aerobic actinomycetes. Int J Syst Evol Microbiol 1970; 20: 435– 443
    [Google Scholar]
  45. Lechevalier MP. Identification of aerobic actinomycetes of clinical importance. J Lab Clin Med 1968; 71: 934– 944
    [Google Scholar]
  46. Lechevalier MP, de Bievre C, Lechevalier H. Chemotaxonomy of aerobic actinomycetes: phospholipid composition. Biochem Syst Ecol 1977; 5: 249– 260 [CrossRef]
    [Google Scholar]
  47. Kroppenstedt R. Fatty acid and menaquinone analysis of actinomycetes and related organisms. In Goodfellow M, Minnikin DE. (editors) Chemical Methods in Bacterial Systematic London: Academic Press; 1985; pp. 173– 199
    [Google Scholar]
  48. Lipski A, Altendorf K. Actinomadura nitritigenes sp. nov., Isolated from Experimental Biofilters. Int J Syst Bacteriol 1995; 45: 717– 723 [CrossRef]
    [Google Scholar]
  49. Mertz FP, Yao RC. Actinomadura fibrosa sp. nov. isolated from soil. Int J Syst Bacteriol 1990; 40: 28– 33 [CrossRef] [PubMed]
    [Google Scholar]
  50. Ezaki T, Hashimoto Y, Yabuuchi E. Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 1989; 39: 224– 229 [CrossRef]
    [Google Scholar]
  51. Wayne L, Brenner D, Colwell R, Grimont PAD, Kandler O et al. International Committee on Systematic Bacteriology: Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 1987; 37: 463– 464 [Crossref]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002714
Loading
/content/journal/ijsem/10.1099/ijsem.0.002714
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error